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ABSTRACT The unprecedented availability of semantic trajectory data opens

Driven by the advance of positioning technology and the popularity dogr to unde'rsga.mding. objec't m(lavement lalong thgdspatri]al,ftvslrwppral
of location-sharing services, semantic-enriched trajectory data have?" s_ema.ntlc |n;]en3|gns S|ml|1taneokys y: Consrll er the fo (lnlwmg
become unprecedentedly available. The sequential patterns hidderfluestions: (1) Where do people working in Manhattan usually go

in such data, when properly dePned and extracted, can greatly benl© relax after work? (2) Which restaurants do people prefer after

ebt tasks like targeted advertising and urban planning. Unfortu- shopping at the Fifth Avenue? (3) Are there any popular sightsee-

nately, classic sequential pattern mining algorithms developed for 'Nd routes for a one-day trip in Paris? The answers to such ques-
transactional data cannot effectively mine patterns in semantic tra- 1oNS €an greatly benebt a wide spectrum of real-life tasks, such as
jectories, mainly because the places in the continuous space cant@rgeted advertising, urban planning and location prediction.

not be regarded as independent OitemsO®. Instead, similar places W& answer the above questions by explorfixg-grained se-

need to be grouped to collaboratively form frequent sequential pat. 94¢ntial patterns in semantic trajectories. Given a sequence database
terns. That said, it remains a challenging task to mine what we call 2 @nd a threshold , a sequential pattern is typically dePned as a
fine-grained sequential patterns, which must satisfy spatial com- subsequence that matches at I¢asequences i. Semantic tra-

pactness, semantic consistency and temporal continuity simultaneJSCtOry data, however, introduce new challenges to this debnition
ously. We propose 8.ITTER to effectively mine such bne-grained anc_i conventlo_nal sequential pattern mining algorithms [1, 10, 16.]'
sequential patterns in two steps. In the brst step, it retrieves alo illustrate, Figure 1 shows a semantic trajectory database consist-

set of spatially coarse patterns, each attached with a set of trajec-ing Of 5 objects{oy, 0z, ..., 05} and 12 placegps, p, . .., P12 }.
tory snippets that precisely record the patternOs occurrences in th

Let! =3.By treating each plagg (1 < i < 12) as an indepen-
database. In the second stepL&TER breaks each coarse pattern dent OitemO, we fail to Pnd any frequent sequences. However, if we
into Pne-grained ones in a top-down manner, by progressively de-

groupsimilar places together, interesting patterns may emerge. For

tecting dense and compact clusters in a higher-dimensional Spacé?‘stance, leG1 = {p1, p2}, G2 E {p7, ps}f, Gs = {ps. P10, P},
spanned by the snippets.PSTTER uses an effective algorithm the sequenc_sl — G2 = Gs ecorrlnefs requent as it appears in
called weighted snippet shift to detect such clusters, and leverages 4"€ rajectories 0by, 0; andos. Each ofGy, G2 andGs contains
divide-and-conquer strategy to speed up the top-down pattern sp“,[_several places that are spatially close and in the same category. The
ting process. Our experiments on both real and synthetic data setaltemG1 — G, — Gs thus clearly reveals a common behavior

demonstrate the effectiveness and efbciencyrafi BrER. that people working in are@; like to exercise at gym i, after
work, and then dine at restaurants3s.

The above running example leads to the following observation:
1. INTRODUCTION to bnd frequent sequential patterns in semantic trajectories, one
A semantic trajectory [2] is a sequence of timestamped places should group similar places together. However, while numerous

wherein each place is described by a spatial location as well assequential patterns can be formed by adopting different grouping
a semantic labele(g., ofbce, park). By virtue of improved posi-  strategies, not all of them are interesting. Specibcally, a pattern can
tioning accuracy, raw GPS trajectories can be readily linked with reBect movement regularity only when the following conditions are
external semantic informatior.g., land use data) for enrichment  met: (1)Spatial compactness. The groups in a pattern should not
[2, 13]. Meanwhile, location-sharing services like Facebook Places include places that are too faraway, otherwise the pattern becomes
and Foursquare allow people to check-in at different places, eachspatially pointless. In the above exampleGif = {p1, p2, ps, ps },
having a spatial location and a semantic category. The check-in se-G, = {ps, p7, ps, P12}, Gs = {Ps, Ps. P10, P11 }, we still obtain a
guence of a user is essentially a low-sampling semantic trajectory, frequent sequenc&; — G, — Gs. Nonetheless, the sequence
millions of which have been collected by each service provider. offers little insight along the spatial dimension@s, G, andGs;

are spatially scattered. (8mantic consistency. The semantics of

the places in each group should be consistent. If we put places from
This work is licensed under the Creative Commons Attribution- different categories into the same group, €y = {ps, Ps, p7},
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li- the semantic meaning of the group becomes obscure. As such, the
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per- yag it patterns become semantically pointless.T¢8jporal conti-

mission prior to any use beyond those covered by the license. Contact . g o -
copyright holder by emailing info@vidb.org. Articles from this volume "4 The patterrGy — Gz — Gs in Figure 1 is interesting as

were invited to present their results at the 40th International Conference on POth transition$s; — G2 andG2 — Gs occurin no more tha60
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China. minutes. If the transition time between two consecutive groups is
Proceedings of the VLDB Endowment, Vol. 7, No. 9 too large, say one year, the pattern becomes temporally pointless.
Copyright 2014 VLDB Endowment 2150-8097/14/05.
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Figure 1: Semantic trajectories ofos, 02, ..., 0s and an example bne-grained sequential patters, — G, — Gz (! = 3).
We call the patterns satisfying the above three conditfbrns need to belense to meet the support threshdldand becompact to

grained sequential patterns, and seek to mine them in an effective  ensure the patternsO spatial compactness. The key benebt of cluster-
and efbcient manner. Fine-grained sequential patterns are impor-ing snippets is that the grouping of places considers not only spatial
tant for various real-life tasks. Let us consider targeted advertis- proximity but also the sequential information encoded in the snip-
ing as an example. Suppose the restaupanin Figure 1 wants pets. The snippet clustering is underpinned by an effective algo-
to advertise to promote sales. Knowing that many people follow rithm calledweighted snippet shift, which allows similar snippets
the patterrG; — G, — Gg, the restaurant can simply advertise to shift to the same stationary point and form compact clusters. For
around the region&, andG; to effectively attract potential cus-  the unqualibed snippet clusters,, the clusters that cannot form
tomers. As another example, by extracting Pne-grained sequentialbne-grained patterns,PSITTER rePnes the clustering granularity
patterns in a city, we can understand how the populace Row. Suchto discover additional patterns from them. Such a process contin-
an understanding can play a key role in improving the design of ues until no more Pne-grained patterns exist.
transportation systems and road networks. Furthermore, to speed up the top-down pattern splitting process,
Despite its importance, mining Pne-grained sequential patterns isafter each round of clustering, we organize the unqualibed snippet
a non-trivial task. The major challenge is, how to design an effec- clusters into several disjoiabmmunities that are mutually faraway.
tive grouping strategy to ensure the result sequences are frequentVe analytically prove that the further splitting of each community
and meanwhile Pne-grained? A bruteforce solution that enumer- is autonomous. Better still, small communities that cannot exceed
ates all the possible combinations of places is exponential in na- support threshold are pruned early on to avoid unnecessary split-
ture. Several methods [11, 12, 5] have been proposed for mining ting. Therefore, BLITTER can generate bne-grained patterns in a
sequential patterns in GPS trajectories, but none of them can effec-divide-and-conquer manner with excellent efpciency.
tively address our problem either. To handle spatial continuity, all ~ Our contributions can be summarized as follows:
these methods partition the whole space into numerous small grids, (1) We introduce the problem of mining Pne-grained sequential
and group the places falling inside the same grid (or several neigh- patterns in semantic trajectories. To the best of our knowledge,
boring grids). Though simple and efbcient, rigid space partitioning we are brst in attempting to bPnd sequential patterns that reRect
is ineffective for mining Pne-grained patterns because: (1) It suf- Pne-grained movement regularity along the spatial, temporal and
fers from the sharp boundary problem. That is, the places close tosemantic dimensions simultaneously.
the grid boundaries may be assigned into different groups and thus (2) We develop 8LITTER for the proposed problem.P&ITTER
potential patterns can be lost. (2) It requires a pre-specibed granu-does not rely on bxed space partitioning. Instead, it is a data-driven
larity for partitioning. For our problem, it is hard to pre-specify a approach, which effectively mines bne-grained sequential patterns
proper granularity as it may be either too coarse to generate com-with excellent efbciency.
pact groups or too bne to discover frequent patterns. (3) Spatial (3) Our extensive experiments on both real and synthetic data
proximity should not be the only criterion for grouping places. sets show that, S.ITTER is Rexible to discover bPne-grained pat-
For instance, in Figure T, is closer tops thanp:, but if we let terns in various settings, and it outperforms compared methods sig-
Gi1 = {p2,ps}, the patterrG; — G2 — G3 becomes infrequent. nibcantly in terms of both effectiveness and efbciency.
Hence, the grouping should consider not only spatial proximity, but
also the sequential information in the database. 2. PRELIMINARIES

Contributions. We propose SLITTER, which employs two steps Lo

to effectively discover bne-grained sequential patterns. In the prst2.1  Problem Description

step, $LITTER groups all the places by category and retrieves a  Let P = {p1,pz,...,Pm } be a set of places ar@d be a set
set of coarse patterns from the database. These coarse patterns digf semantic categories. Each plagec P is debned as a tuple
regard the spatial compactness constraint, but guarantee semanti¢p.loc, p.cat). Here,p.loc is a two-dimensional vector represent-
consistency and temporal continuity. The discovery of such coarseing pOs spatial location, apccat € C is pOs category. With these

patterns greatly reduces the search space of Pne-grained patterngotations, we debnemantic trajectory as follows.
because any bne-grained pattern must have one and only one coarse

pattern as itparent pattern. $LITTER also attaches each coarse DEFINITION 1 (SEMANTIC TRAJECTORY). Given a moving
pattern with a set ofrajectory Snippets,~WhiCh are the place se-  object 0, its semantic trajectory is a sequence of timestamped places
quences corresponding to the patternOs occurrences in the databagép:, t1), (P2, t2), ..., (P, t1)) where t; <t ifi <] , and each

In the second step,AITTERtreats each coarse pattern indepen- element (pi, ti) means 0 is at place pi € P at time t;.
dently and obtains Pne-grained patterns by splitting a coarse pat- ) ) )
tern in a top-down manner. SpecibcallyL$TTER splits a coarse Given a semantic trajectory databagour goal is to bnd fre-
pattern by clustering its snippets, and then extracts Pne-grained patduent sequential patterns 1. Due to spatial continuity, similar

terns from thoselense andcompact snippet clusters. The clusters places need to be grouped to collaboratively form frequent patterns.
Below, we introduce the concepts Gfsequence andcontainment.



DEFINITION 2 (G-SEQUENCEH). A length-K group sequence
(G-sequence) T has the form T = G, ‘—t> G» SELN I—t> Gy,
where (1) Gi C P (1 <i <K)isa group of places; and (2) ! t is
the maximum transition time between any two consecutive groups.

DEFINITION 3 (CONTAINMENT). Given a semantic trajectory
0= {(p1,t1), (P2, t2), ..., (pi, t1)) and a G-sequence T = G LN
Gy--- LN Gk (k <1), 0 contains T (denoted as T T 0) if there
exist integers 1 < j1 <2 < .-+ <jy < | suchthat: (1)V1 <
i <k p, €Gi;and(2)V1<i<k-10<tj,, —t, <!t

Note that the matching places, p;, - - - pj,, in Debnition 3 are
not necessarily consecutive i For clarity, we also denote a G-
sequencés; LN c PRTLN Gk asG; — Gz --- — Gk when
the contextis clear. Now, we proceed to delpgort andfrequent
G-sequence.

DEFINITION 4 (SUPPORY). Given a G-sequence T and a se-
mantic trajectory database D, the support of T in D is the num-
ber of trajectories in D that contain T, i.e, Sup(T) = |{olo €
DAT C o}l

DEFINITION 5 (FREQUENTG-SEQUENCH. Given a thresh-
old" , a G-sequence T is frequent in database D if Sup(T) >!.

In the rest of the paper, we ugequent G-sequence andsequen-

DEFINITION 8 (COVERAGE). Given R, a set of fine-grained
sequential patterng that are non-overlapping, the coverage of R is
Coveragg(R) = ;.5 Sup(T).

We are now ready to formulate our problem. Given a support
threshold , atemporal constraint t, and a spatial variance thresh-
old #, bnd in databas® a setR of non-overlapping Pne-grained
patterns such that the coveragefdis as high as possible.

2.2 Overview of Splitter

Even for discrete data, the sequential pattern mining problem has
been shown to be NP-hard [14]. In our problem, the combinatorial
nature of G-sequence makes this task even more challenging. As-
sume the places i® distribute in 2 categorie8 andB, and each
category has 100 distinct places. To mine length-2 Pne-grained pat-
terns, there aré x (21%° — 1) x (21°° — 1) candidate G-sequences,
where the term 4 is derived for the four cages— A, A — B,

B — A andB — B, and the term2!®° —1 is derived as each group

can contain any number of places from the same category. It is pro-
hibitively expensive to enumerate all the possible grouping strate-
gies and search for the beRt by running classic sequential pat-
tern mining algorithms [1, 10, 16] repeatedly. To avoid the costly
enumerate-and-test process, we examine several characteristics of
Pne-grained patterns in the sequel, which underpin the design of
SPLITTER.

With a time constraint t, letT = G; — G,--- — G and
T'= G} = G5--- — G be two G-sequences that sati€y C

tial pattern interchangeably. Note that, even for moderately sized G| for 1 < i < k. Obviously, it is ensure@up(T) < Sup(T'),
P andD, there can be numerous frequent G-sequences, as exemihusT' is frequent so long aF is frequent. We calll* a parent

pliped below.

EXAMPLE 1. In Figure 1, as G1 — G2 — Gg3 is frequent, the
G-sequences derived by expanding any of G1, G2 or Gz are also
[frequent. There are five places pPs, Pa, Ps, Ps and P12 that can be
used for expansion, and each can be added into any of G1, G2 and
G3 or none of them. Hence, we can derive 45— 1 expanded G-
sequences, but none of them are interesting given the presence of
G1 — Gy — Gas.

pattern of T. Now, suppose we want to Pnd Pne-grained patterns
for olce — gym, that is, visiting gyms after work. We can con-
struct a groupG; to include all the places in categooyce , and
G2 to include all the places igym. ThenG; — G will be the
parent of any bne-grained patterns that we want to Pnd. Mean-
while, if G1 — G3 is infrequent in the database, it is ensured no
Pne-grained patterns can exist fidce — gym.

The above inspires a two-step design feL8TER. In the brst
step, we group the places i by category. The places in each
group, while being spatially scattered, have the same category. By

Considering the daunting size and high redundancy of the com- viewing each group as an item, we extract all the frequent sequen-
plete set of frequent G-sequences, it is infeasible to report all of tial patterns from the database. These patterns, which we call coarse
them. Instead, what we want is a set of frequent G-sequences thapatterns, satisfy semantic and temporal constraints but may not be

arenon-overlapping andfine-grained.

DEFINITION 6 (OVERLAPPING RELATIONSHIP). Given two
G-sequences Ty = Gi1 |—t> G> '—t> '—t> Gk and T, =
G} SN G RN Gi, T1 and T, are overlapping if (1)
k=1l;and(2)V1<i <k,GiNG} 7 ".

DEFINITION 7 (FINE-GRAINED PATTERN). Given a frequent
G-sequence T = G1 I—‘) G, L> I—t> Gk, T is fine-grained
if: (1)the places in each Gi have the same semantic category, and
(2) ¢ K Var(Gi) < # where Var(Gi) is the spatial variance of
the places in Gi and # is a variance threshold.

Note the above three types of constraints for a Pne-grained pat-

tern: (1) the maximum transition timet ensures the temporal

spatially compact. In the second step, we consider each coarse pat-
tern independently and explore bne-grained patterns from it.

, 3 ops\;
! L ® ofbc
NP g .
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e =0 pe] gym
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Figure 2: A coarse patternolce — gym(! =3 and! t =60).
The number beside each line is the number of objects having
the movement (assume all the 10 objects are distinct).

The discovery of coarse patterns signibcantly reduces the search

continuity; (2) the semantic constraint ensures the semantic con-space, because it not only Plters all the infrequent combinations of

sistency; and (3) the variance threshéldnsures the spatial com-
pactness. Our goal is to bPnd a $etof Pne-grained patterns that
are non-overlapping. Meanwhile, we waRtto be as complete as
possible. Since any two patternsimust be non-overlapping, we
dePne the coverage & as follows.

semantic categories, but also allows us to focus on one coarse pat-
tern at each time. But the challenge is, how to explore Pne-grained

patterns from a coarse one? Figure 2 shows an example. Assume
! =3 and! t = 60. With G1 = {pi1,p2,ps,ps} andG, =

{ps, Ps, p7}, we obtain a coarse pattefBy — G». To explore



Pne-grained patterns from it, an intuitive idea is to split bGth After the transformation, it is natural to use some classic sequen-
andG: into compact subgroups using spatial clustering. By split- tial pattern mining algorithmse(g., PrebxSpan) to extract all the
ting each group into 2 subgroups using K-Means, we will obtain coarse patterns. However, recall the temporal constraintA se-
the following subgroupsi{p:}, {p2,ps,pa}, {ps} and{ps, pr}, guential pattern mining algorithm needs to be tailored to ensure the
then the patterdpz, ps, ps} — {ps, p7} appears (support = 6). transition time between two consecutive groups is no morelthtan
Although it seems effective at brst glance, splitting each group We tailor PrePxSpan as it has proved to be one of the most efbcient
independently is actually problematic under careful scrutiny. First, sequential pattern mining algorithms. The basic idea of PrebxSpan
each subgroup may include useless places,gikandp7 in the is to use short patterns as prebxes to project the database and pro-
pattern{p., ps,ps} — {ps, p7}. Worse still, interesting patterns,  gressively grow the short patterns by searching for local frequent
like {p1,p2,pa} — {ps}, may be lost. Second, it assigns each items. For a short patte®, the$-projected database: includes
place to only one subgroup. In practice, however, people may movethe postbxes from the sequences that corffairLocal frequent
from one place, likgs in Figure 2, to different places. Hence, it items inD, are then identiped and appendedstto form longer
is desirable to allow one place to belong to multiple subgroups, patterns. Such a process is repeated recursively until no more local
thereby contributing to different patterns. frequent items exist. One can refer to [10] for more details. For the
To address the above problem$®L8 TER employs a more ef- purpose of mining time-constrained sequential patterns, we revise
fective strategy to explore bne-grained patterns from a coarse onethe notions opostfix andlocal frequent item as follows.
it directly clusters the movements that match the coarse pattern,

which we calltrajectory snippets. DEFINITION 10 (POSTFIX). Given a timestamped sequence

%= ((G1,t1),(Gz2,t2),...,(Gn,tn)), and an element Gy (1 <

DEFINITION 9 (TRAJECTORYSNIPPET). Given alength-K G-
sequence T = G1 I—t> Gy--- L> Gk, and a trajectory 0 =
((p1,t1), (P2, t2), ..., (P, 1)) satisfying T C 0, a place sequence

m < n ) in % the postfix of Yow.r.t. Gm is ((Gm+1 ,tm+1 —
tm),(Gm+21tm+2 _tm)1---1(Gnytn —tm)>~

DEFINITION 11  (LOCAL FREQUENTITEM). Given a times-

PiiPi, - - Pj, in Ois called a snippet for T if it satisfies: (1) 1 <
j1<j2< - <jx <L 2)V1<i <Kk p, € Gi;and(3)
Vi<i<k-1L1t,, —t, <!t

tamped sequence %= {(G1,11),(Gz2,t2),...,(Gn,tn)), an item
G, and a time constraint ! t, the sequence % contains G if there
exists an integer i (1 <i < n)suchthat Gi = Gandt; <! t. In
a projected database, an item G is frequent if there are at least !

Informally, in Figure 2, the snippets for the pattesite — postfixes that contain G.

gym are the lines with arrows.F&ITTER directly merges spatially

close lines to form bne-grained patterns. The benebts are two-fold: Given a sequenc&and a frequent itenG, when creatings-

(1) the snippets precisely record a coarse patternOs place-level ogrojected database, the standard PrebxSpan procedure generates
currences in the trajectory database, and blters all irrelevant placesone postbx based on the brst occurrence af % This strategy,

(e.g., p7 in Figure 2); and (2) each snippet preserves the move- unfortunately, can miss time-constrained patterns in our problem.
ments among places, thus snippet merging considers not only spa-

tial proximity but also sequential information. EXAMPLE 3. Let! t = 60 and! = 3. In the database shown

in Table 1, item G is frequent. The G1-projected database gener-
ated by PrefixSpan is:

(1) Ol/G 1= ((Gz, 20), (Gs, 30)>

(2) 02/G 1 = {(G2, 30), (G1, 360), (G2, 400), (Gs, 420))

(3) 04/G 1 = {(G1, 120), (G3, 140), (G2, 150), (G, 180))
The elements satisfyingt < 60are (G2, 20), (Gz, 30) and (G2, 30).

Two questions remain to be answered: (1) how to mine the coarseNo local item is frequent, hence G1 cannot be grown any more.
patterns and their snippets? and (2) how to effectively cluster the

snippets given the fact that we do not know the correct number of ~ To overcome the above problem, we introduce a simple principle

clusters? In the next two sections, we elaborate the two steps ofcalledfull projection. Specipcally, for a sequenegand a frequent
SPLITTER and answer these two questions. item G, we generate a postbx for every occurrence dh %

EXAMPLE 2. In Figure 2, the snippets p1 — Ps, P2 — Ps,
Pa — Ps are similar as both their starting and ending places are
spatially close. By merging these snippets, we obtain a fine-grained
pattern {p1,P2,Pa} — {ps}. Similarly, by merging the snippets
Ps — Ps and Pa — Pe, we obtain the pattern {ps,pa} — {ps }.

EXAMPLE 4. With full projection, G1-projected database is:

3. MINING COARSE PATTERN SNIPPETS

Given the place s&?, we Prst group the places by cat () ou/G 1 = {(G2,20),(Gs, 30)

iven the place s&®, we brst group the places by category. _

Let {G1,Gz2,...,Gq} be the results such that the places in each (2) 02/G 1 = ((Gz2,30), (G, 360), (G2, 400), (Gs, 420))
Gi have the same category. By viewing e&@has anizem, we can (3) 02/G 1 = ((Gz,40), (Gs, 60))

transform a semantic trajectory to a timestamped item sequence. (4) 04/G 1 = {(G1, 120), (Gs, 140), (G2, 150), (Gs, 180))
Consider the database in Figure 1. W&h = office, G2 = gym, (5) 04/G 1 = ((Gs, 20), (G2, 30), (Gs, 60))

andGs; = restaurant, Table 1 shows the transformed database.
Items Gz and G3 are frequent and meanwhile satisfy the temporal
constraint, thus longer patterns G ﬂ) Gy and G1 ﬂ) Gs are

Table 1: The transformed semantic trajectory database. found in the projected database.

[ Object | Timestamped item sequence |

01 1(G2,0),(G1,10), (G2, 30), (Gs, 40)"

02 I(G1,0), (G2, 30), (G1, 360), (G2, 400), (G3, 420)"

03 (G2, 0), (G3, 30)"

04 1(G1,0), (G1, 120), (Gg, 140), (Gz, 150), (G3, 180)"

05 (G2, 50), (Gz, 80), (Gs, 120), (Gy, 210)"

With full projection, the projected database includes all postbxes
to avoid missing patterns under the time constraint. That said, mul-
tiple postbxes from the same trajectory can appear simultaneously.
Hence, we should attach each postbx with its trajectory id to pre-
vent one trajectory from being counted repeatedly.




Another intention of full projection is to collect all the distinct
snippets for a coarse pattern. Continuing the above exarople,
contains two different snippetpgpr andp,pr) for the coarse pat-
ternG; — Gy, these two snippets correspond to the two projec-
tions of 0,/G 1. In order to extract snippets along with a coarse

4. FINDING FINE-GRAINED PATTERNS

For each coarse patteiih, we now have a sef of its snippets
that are spatially scattered. Next task is to explore Pne-grained pat-
tens forT by merging close snippets . To this end, we trans-
form each snippet into a weighted point in a higher-dimensional

pattern, we maintain an additional snippet Peld in each projection gyclidean space. Given a lengthsnippets = pipz - - - pc, we
and grow the snippet along with the pattern, as exempliPed below. {ransform it into &@2k-dimensional poink by assembling the coor-

EXAMPLE 5. In Table 1, G, is frequent and G1 T 01. In
the projection 011G 1, we additionally store the snippet p1, which
records G1’s occurrence in 01. Note that, by preserving the orig-
inal place id information in the transformed database, p1 is at-
tached with the element (G1,10) and thus readily available. As
Gi1 grows to G1 — Gy, the snippet field p1 is also extended to
p1p7. When reporting the pattern G1 — G, the snippets in its
projected database are aggregated and reported. Using the pseudo
projection technique [ 10], maintaining the snippet field incurs little
overhead.

Algorithm 1 sketches our algorithm for mining coarse patterns
and their snippets. As shown, given the transformed database
and threshold , we brst extract all the single frequent itemsiin
(note that we do not need to check the constraihivhen search-
ing for single frequent items if). Then for each frequent item

dinates ofpi (1 < i < k). Meanwhile, we attach the weight ef
namely the number of visitors, to. The key observation is that, if
a bne-grained pattern exists, its snippets will fordaase andcom-
pact cluster in the transformed space. The cluster needsderse

in order to meet support threshdld and becompact to meet the
variance threshol#. Hence, the problem is reduced to detecting
such dense and compact clusters in the transformed space.

One may suggest some classic clustering algorithms such as K-
means, GMM and DBSCAN to detect clusters. However, the effec-
tiveness of these algorithms relies on the prior knowledge about the
underlying data distribution and/or correctly guessing the number
of clusters. For a coarse pattéfnsnippet distribution in the trans-
formed space can be really complex, rendering these algorithms
intractable. To overcome this challenge, we propose an adaption of
the mean shift algorithm [3], calledeighted snippet shift.

Mean shift is a non-parametric method widely used in the com-
puter vision community. It has several nice properties for our task.

we build thei-projected database using full projection. Once the First, it does not assume any prior knowledge about the number
projected database is built, we call PrebxSpan to recursively outputof clusters or data distribution. Thus it can effectively discover ar-
frequent patterns. The PrePxSpan procedure is similar to the stan-itrarily shaped clusters in a complex data space. Second, it has

dard version in [10], except that the time constrairtis checked

only one parameter, namely the bandwidth, which has a physical

when searching for local frequent items. Moreover, full projection meaning as the scale of observation. The tuning of bandwidth
is adopted, and each projected postbx maintains a snippet Peld thagan effectively control the granularity of observation. This prop-

is grown along with the pattern.

erty makes mean shift well suited for Pnding Pne-grained patterns

The output of Algorithm 1 is a set of coarse patterns. Each coarsein a top-down manner: Starting with a large if some snippet

patternT is attached with a snippet s6t= {(s,V,w)|T C s}.

In the triple(s, Vs, Ws), s is a snippet fofT, Vs is the set of ob-
jects containings (we call themwisitors of s), andw = |V|. For
example, in Figure 1p1 — p7 is a snippet for the coarse pattern
olce — gym, ando; is the only object containing this snippet, so
the respective triple ip1 — pr, {01}, 1).

Algorithm 1: Mining coarse patterns and snippets.

Input: support thresholdl, temporal constrairit t,
transformed semantic trajectory database

1 Procedure InitialProjection(D, !, ! t)

2 L + frequent items irD;

3 foreachitem i in £ do

4 S+";

5

6

7

foreach trajectory 0 in D do
L R «+ postbxes for all occurrencesioin o;

S+ SUR;
8 Outputi and its snippets;
9 PrebxSpan(1,S,! t);

10
11
12
13
14

Function PrefixSpan(% 1, S|-,! t)
L «+ frequent items ir|- meeting time constraint t;
foreachitem i in £ do
% < append to %
Build S|~ using full projection and grow the snippet
Peld in each projection;
Output% and its snippets;
PrebxSpang, | +1,S|.1,! t);
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clusters are dense and compact, we grab them out as bPne-grained
patterns. For the remaining snippets, we redude observe at a
Pner granularity, such a process continues until no more clusters
can be dense enough to excéed

In the following, we brst describe the weighted snippet shift al-
gorithm. Then we introduce the details of the top-down pattern
discovery process. Finally, we discuss the algorithm efbciency.

4.1 Pattern Splitting via Weighted Snippet Shift

We brst introduce standard mean shift, then describe how we
adapt it to cluster snippets and split a coarse pattern.

Standard Mean Shift. Mean shift is essentially a kernel-based
mode (i.e., local maxima of density) seeking method. While var-

ious kernel functions can be used for mean shift, we choose the
Epanechnikov kernel due to its simplicity and optimality in terms
of bias-variance tradeoff. The Epanechnikov kernel is debned as

- o —|x[?) if[x[<1

K(x) = 0 otherwise,

herecis a constant to ensure K (x) dx = 1.

Informally, for ad-dimensional point, mean shift Pnds its mode
by iteratively shifting a radiusr window towards a local density
maxima. The window is called the kernel window and the radius
is called the bandwidth. In each iteration, }¢t be the center of
current window, andV' = {x1, X2, ..., xm } be them data points
inside the window, then the kernel window is shifted towards the
maximum increase of density for'*). Using the Epanechnikov
kernel, the mean shift vector fgt¥) is

®)y = 1¥
m

(k)

m(y Xi —y (1)

i=1



Theny® is shifted bym(y)), resulting in a new kernel win-
dow located at the mean ¢k, x2, ..., xm }, namely

19
y 9+ my™)y= = x.
m.i

(k+1) _

y (2)
Figure 3 illustrates the mean shift operation. Given a pgint
mean shift starts with an initial window centy,-ﬁo) x, and itera-
tively shifts the window according to Equation 2. The sequence
{y™ 1} will converge to the modex belongs to. Then the data
points that converge to the same mode are grouped as one cluster.

kernel window .~~~ ">~ pandwidth

mean shift vector ~~----

Figure 3: Mean shift with the Epanechnikov kernel.

Weighted Snippet Shift. We have transformed the coarse pattern

Algorithm 2: Weighted snippet shift.

Input: a set ofS of weighted snippets, bandwidth
1 foreachx € S do

2 | k+0,y9 «x;

3 while True do

4 N {30 s i, ly®) = xif| < h;
5 yED O o wixi) (R, wi);

6 it ly*® -y < &then

7 | return (x, y®**);

8 k< k+1,

THEOREM 1. Starting from any snippet x € S, the weighted
snippet shift procedure will converge.

PROOF See Appendix. [

Pattern Splitting. For a coarse pattefh and its snippet sef, Al-
gorithm 2 shifts each snippet #to a stationary point (mode). The
shippets shifted to the same mode are then grouped together. In this
way, S is split into a number of clustefss = {S1,S82,...,Sn }.

A clusterSi € " s forms a Pne-grained pattern if it satispes the
following two conditions: (1)S; is frequent, namely Us's , | >

', and (2) the G-sequence derived frd&nhas a spatial variance

snippets into weighted points and the weight denotes the numbersmaller thar# (Debnition 7).

of visitors. Intuitively, a large-weight snippet is a popular place

sequence, and should have a higher chance to attract the mode to4.2  Top-Down Pattern Discovery

wards it. Below, we adapt the standard mean shift procedure to
incorporate snippet weight and prove its convergence. A et
{(x1,W1), (x2,W2), ..., (xn,Wn)} be those weighted points in
thed-dimensional space. Using the Epanechnikov kernel, the den-
sity estimator at any locatioy is

c
hd+2 w
X

Y — X
h

wi (h% —[ly —xi ||*).
"N

) 1 &

Ay) = W_: wi K (
I

wherew = * L, w;, andN C X are points inside the radius-

window centered & (i.e., the distance tg is smaller tharh). The

density gradient ay is then given by

):

. 2c
Vy) = haz w wi(xi —y)
%’\; ' ) | *
= 720 & Wi ( S XN Wixi -y
hd+2 w - N Wi

To perform gradient asc|ent, the weighted shift vector becomes
' Ny WiXj
m(y) = -
x ;"N Wi

Y 3
which is simply the difference between the weighted mean of points
in AV, andy, the current window center. One can observe that the
shifting vector is proportional to the density gradi&f(y), it thus
movesy towards the densest location in the current window. The
snippet weight is playing an important role in shifting: if a snippet
has a large number of visitors, then it is more likely to attract the
new center towards itself.

We sketch the weighted snippet shift procedure in Algorithm 2.
As shown, starting from the initial point, the procedure brst uses
y(o) = x as the window center and retrieves poinfs inside the
radiush window. It then moves the window center to the weighted
mean of Nk. The procedure is repeated until the window center
becomes (approximately) stationary.

To split a coarse pattern, itis hard to pre-specify an optimal band-
width h: if h is small, we may obtain many small snippet clusters
that cannot exceed the support thresHale®n the other hand, Hi
is too large, we may obtain some large clusters that cannot satisfy
the variance constraimt

To avoid guessing a bxed bandwidth beforehand, we develop a
top-down pattern discovery process: We start snippet clustering
with an initial bandwidthh that is large. From the result snippet
clusters, we grab out the ones forming Pne-grained patterns. Then,
we damperh and zoom into the remaining snippets to bnd addi-
tional patterns. This process continues until no more patterns exist,
and Pne-grained patterns are reported on-the-Ry.

However, after each round of clustering, the set of remaining
snippets could still be large, it is costly to repeat Algorithm 2 on a
large set of snippets. To speed up the top-down discovery process,
we design a divide-and-conquer strategy. The key idea is to orga-
nize the remaining clusters into several communities that are mu-
tually faraway. We prove that the further clustering with a smaller
h can be carried out in each community independently. Better still,
small communities that cannot exceed the support threshold are
pruned early on. Lets = {&1,S,...,Sn} be a set of snippet
clusters. Below, we introduce the notion'okommunity.

DEFINITION 12 ( -ADJACENCY). Given two clusters Si and
S (1 Z]) theyare' -adjacentif3Ix € S,y € S, ||lx—y| <.

DEFINITION 13 (' -ADJACENT GRAPH). Given a distance' ,
the ' -adjacent graph Gy constructed from " s is as follows: each
node of Gy is a cluster S§i € " s, and there exists an edge between

two nodes if the corresponding clusters are ' -adjacent.

Based on Debnition 13, we debne-aommunity as a connected
component in thé -adjacent graph. Figure 4 shows a concrete ex-
ample. Given 6 snippet cluste&, So, ..., Ss, their' -adjacent
graph is shown in Figure 4(b). There are 3 connected components
in the graph, corresponding to thecommunitiesC4, C, andCs.
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(a) Snippet clusters. (b) ! -adjacent graph.

Figure 4: lllustration of ' -community.

Let#c = {C1,C2,...,Ci} be the' -communities obtained
from " s, the distance between any tWwecommunities is at least
' . Recall Algorithm 2, which iteratively shifts a raditswindow
until convergence. Below, we prove thahif< '/ V2, points from
different’ -communities will never converge to the same mode.

LEMMA 1. When running Algorithm 2 from any point x, let
y¥) be the center of the window after K iterations. With h <
"I /2, if the window centered at vy includes only points from

(k+1)

Ci, then the window at'y also includes only points from C;.

PROOF See Appendix. [

LEMMA 2. Given a point x € C;, suppose X converges to yx
by running Algorithm 2 with bandwidth h. Ifh < 'l /2, the win-
dow centered at yx includes only points from C;.

PROOF By the debnition of -community, the radius win-
dow centeredy® = x includes only points fronC; because
h <' v2<' .ByLemma 1, if the window a¢‘*) includes only
points fromC;, so does the window at'**V . Asy, is derived
from the sequencgy®’ }, the lemma holds immediately.(]

Given#c = {C1,Co,...,C¢}, Lemma 2 amounts to saying
that an arbitrary poink in any C; converges to a kernel window
that only contains points i€;. We proceed to show when >
v/2h, this condition sufPces to guarantee points from two different
' -communities will not converge to the same mode.

THEOREM 2. Given two ' -communities Ci and C; (i ¥ ),
and two points x € Ci and x' € Cj. Withh <'l /2, suppose x
converges to'y and X' converges to'y', it is ensuredy 7 y'.

PROOF See Appendix. []

Theorem 2 implies a nice property forcommunity. Suppose
we run Algorithm 2 ortc = {C1,C», ..., C¢} with a bandwidth
h < '/ /2, each community; is totally independent of others.
Hence, the task of clusterig: can be broken intosmaller tasks.
Moreover, small communities that cannot excéedan be safely
pruned, as suggested in Theorem 3.

THEOREM 3. For Ci € #c, let Vs be the set of visitors for a
snippet s € Ci. Given the support threshold ! , if |Us» ¢, Vs| <!,
then Ci cannot generate any fine-grained patterns.

PrROOF By Theorem 2, any snippet clustérgenerated from
Ci satisbeg Us's Vs| < |Us ¢, Vs| <! . The correctness of
Theorem 3 then becomes immediaté.]

Algorithm 3 presents the top-down pattern discovery process.

patterns fromS, we need to specify two parameters: an initial
bandwidthh, and a dampening factqr (0 < ( < 1). The top-
down discovery process is recursive. Given a snippeSsand a
bandwidthh, it brst clustersS into" s using weighted snippet shift.

If Pne-grained patterns exist amohg (by aggregating the snip-
pets in the cluster and checking support and variance), we report
them and remove them frofrs . For the remaining clusters, we or-
ganize them into severakcommunities with = /2(h. ' is set

to v/2(h because it ensures each community is independent when
performing snippet clustering with bandwidth. By Theorem 3,
those small communities that cannot generate frequent patterns are
pruned, then the remaining communities are further clustered with
bandwidth(h to Pnd additional Pne-grained patterns.

Algorithm 3: Top-down pattern discovery.

Input: snippet sesS, support thresholdl, variance threshold
#, bandwidthh, dampening factof

1 Procedure SplitPattern(S, !, #, h, ()

2 " s <« clusterS via weighted snippet shift with;

3 foreachS; € " s do

4 if Sup(Si) >! andV ar(Si) < #then

5 ReportS; as a bne-grained pattern;

6 L RemoveS; from" s;

7 " —V2(h;

8 #c « ' -communities constructed frofs ;
9 foreachC; € C do
10 L if Sup(Ci) >! then

11 L SplitPatternCi, !, #, (h,( );

The' -communities can be efbciently constructed as a byproduct
of weighted snippet shift. The key to constructinggommunities
is to bnd the -neighbors for each snippste S. Recall the ini-
tial step of Algorithm 2, which launches a range query to hnd
neighbors for each snippet. We can simply modify the initial step
by launching a range query with radigsmax {h, v/2(h}. The
query results can generate two lists: one ishheeighbors to al-
low Algorithm 2 to proceed, and the other is theneighbors as a
byproduct to enable-community construction.

4.3 Discussion

In the top-down pattern discovery process, weighted snippet shift
(Algorithm 2) is called multiple times. Given d-dimensional
points, the complexity of Algorithm 2 i©(kdn?), wherek is the
average number of iterations before convergence. The running time
is mainly affected by, butn will not be large in our problem. The
reasons are two-fold: (1) The snippet $eincludesdistinct snip-
pets extracted for a coarse pattern. The cardinality sfexpected
to be much smaller than the database size. (2) As the top-down
process proceeds, a snhippet set is recursively broken into smaller
and smaller communities.

5. EXPERIMENTS

In this section, we evaluate the empirical performancerafi&
TER. All algorithms were implemented in JAVA and the experi-
ments were conducted on a computer with Intel Core i7 2.4Ghz
CPU and 8GB memory.

5.1 Experimental Setup
Data Sets. Our experiments are based on both real and synthetic

Let S be the snippet set of a coarse pattern, to discover Pne-grainedsemantic trajectory data sets. The real data set, referred to as 4SQ,



is collected from Foursquare. As aforementioned, the check-in se-ing length-1 patterns in categoryansportation, with ! = 150
quence of each Foursquare user is essentially a low-sampling seand# = 2 - 10°*. SPLITTER brst groups all the transportation
mantic trajectory. Our 4SQ data set consists of the semantic trajec-places and bnds a coarse pattern (Figure 5(a)). By splitting the
tories of 14,909 users living in New York. There are totally 48,564 pattern with an initial bandwidtho = 0.02, C;, C, andC; are re-
distinct places in the data set, distributed i0.5* x 0.5% space ported as Pne-grained patterns (Figure 5(b)). InterestigglyC>

and 15 categories. The average length of each trajectaryyum- andC3 correspond to three airport areas in New YoRg., which

ber of check-ins, is 20. For most trajectories in 4SQ, some parts corresponds to transportation places in Manhattan, is a large clus-
in a trajectory are dense while the rest are sparse. Note that thister meeting the support threshdldbut not the variance threshold
fact does not affect the applicability of the proposed problem. With #. After grabbing outCi, Cz, C3 and pruning small communi-
the time constraint t, an effective method should automatically ties, SPLITTER proceeds with bandwidth = 0.016 (( = 0.8),
detect bne-grained patterns from the dense parts. and Pnds two additional patter@s andCs, which are the trans-

We generate two synthetic data sets using BrinkhoffOs network-portation places around the Wall Street and Midtown Manhattan,
based generator of moving objektwith San FranciscoOs map as respectively. Finally, SLITTER bnds the 8 bPne-grained patterns
the underlying network. The Prst synthetic data set, called S1K, C1,C, ..., Cg shown in Figure 5(d).
consists ofl0® trajectories an®.0 x 10* distinct places. We brst With ! = 150 and! t = 120 minutes, we bPnd 73 length-2
generatel0® trajectories for 100 timestamps and randomly choose coarse patterns and 6 length-3 ones on 4SQ. Table 2 shows the
one category for each place from 20 pre-debPned categories. Thercoarse patterns with the largest support. We can see these patterns
we debne 50 length-2 Pne-grained patterns and 10 length-3 onesare quite sensible. For example, OSheFood— ShopO implies
For each pattern, we insert a supporting snippet to every trajectory many people brst went shopping, then after having lunch/dinner,
with probability 0.05. The second synthetic data set S10K consists they returned to continue. OProfessienafood— Nightlife SpotO
of 10* trajectories, recorded for 100 timestamps. There are about implies a common behavior that people had dinner after work, and
3.2 x 10° distinct places in S10K. Similarly,0* random trajecto- then went to nightlife spots to relax. We now rebne the most fre-
ries are brst generated and then mixed with pre-debned patterns. quent length-2 pattern OShep FoodO witthg = 0.02, ( = 0.8
Compared Methods. To the best of our knowledge, no existing and# = 2 - 10°*. SPLITTER discovers 6 bne-grained sequential
methods can be directly used to mine bne-grained sequential patPatterns from this coarse pattern. Figure 6 depicts 3 representa-
terns in semantic trajectories. However, some existing techniquestive ones. The pattern8; = S; — Ry andP; = S; — Rz
can be extended for our problem, we describe two compared meth-imply many people just ate at nearby restaurants after shopping,
ods as follows. butP; = S3 — Rg3 shows there are also people willing to eat at

The brst method, referred to aR(®, is adapted from the algo- ~ faraway restaurants after shoppir® (s a group of shops in Man-
rithm for mining sequential patterns in GPS trajectories [5]. The hattan, ands is a group of restaurants near the Prospect Park).
key is to identify a set of disjoint Region-of-Interest (Rol) in the
space. Each Rol is a dense rectangle-shaped region. To bnd such 1able 2: Top bve length-2 and length-3 coarse patterns.

Rols, the space is brst partitioned into numerous small grids, then Pattern Sup
L S - . . Shop# Food 1819
each dense grid is gradually merged with its neighboring grids un- Food# Shop 1464
til the density of the merged region is below a threshaldOnce length=2 Professiona# Nightlife Spot 1121
the Rols are identibed, the places inside the same Rol are grouped Outdoor# Food 947
together. To ensure semantic consistenayifddentibes the Rols Residencé College & University 647
for each category independently. Based on such Ratsp@&ans- Shop# Food# Shop 262
forms the database.4., mapping place ids to Rol ids) and runs enathe3 Prolfzests":”.‘"‘# FO#OdIf '\(‘j'ghtgfhe Spot i;‘g
Algorithm 1 to select out Pne-grained patterns. Sinhgeeatly af- ength= niertanment oo op
. : . Transportatiot Shop# Shop 174
fects mining effectiveness, /3D repeats the above procdssmes Residenceé Outdoor# Food 163

with different) , and reports the best performance.

The second method, referred to as HC, integrates Algorithm 1
with hierarchical spatial clustering. First, HC groups the places in
‘P by category, and uses K-Means to cluster the places in each cat-
egory into K groups based on spatial proximity. With these groups,
HC transforms the database by mapping place ids to group ids,

| Py Sup = 1244

and runs Algorithm 1. Among the output patterns, HC focuses on NG Po: Sup =197
the coarse ones that do not satisfy the spatial constfaiSpecif- 837
ically, HC breaks each group in a coarse pattern into K smaller R - 7;3’;'5;;1‘,; 265

subgroups. With the new grouping scheme, HC runs Algorithm 1
again. Such a process continues until all the output patterns be-|
come bPne-grained. To be efbcient, after each call of Algorithm 1, Shops Restaurants
HC prunes the groups that do not appear in any output patterns, and
thus the trajectory database keeps shrinking.

Figure 6: Example length-2 Pne-grained patterns.

5.2 lllustrating Cases 5.3 Effectiveness Study

We brst demonstrate howpSITTER works by mining length-1 In this subsection, we compare the effectivenessrfiBreR,
patterns on 4SQ. Although length-1 patterns actually do not contain Grip and HC in terms otoverageandnumber of patterns. We
sequential information, they are easier to visualize as each length-only mine patterns with length no less than 2. On 4SQ, we set the
1 snippet is simply a place. Figure 5 shows the process of min- default parameters of bne-grained patterh as150, # = 2 -10°
and! t = 120 minutes. For SLITTER, we set its default param-
http://iapg.jade-hs.de/personen/brinkhoff/generator/ eters ay = 0.02 and( = 0.8 because such a setting achieves
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(a) Initial coarse pattern. (b) Split with h = 0.02. (c) Splitwithh = 0.016. (d) Fine-grained patterns.

Figure 5: lllustration of mining Pne-grained patterns in category transportationon 4SQ. Each dot represents &ransportationplace.

a good tradeoff between effectiveness and efbciency. We set thehy is large enough (0.002), this problem does not exist any more,
repeating number= 10 for GRID, andK =2 for HC. and the performance off&ITTER becomes insensitive tw. Fig-
Varying ! . In the Prst set of experiments, we examine the effect ure 7(h) shows that the performance GfLBrTER increases with

of I on the performance of the three methods. As shown in Figure (- Intuitively, if (' is too small, many appropriate bandwidths may
7(a) and 7(b), the coverage and number of patterns of all the threePe skipped during the top-down discovery of Pne-grained patterns.
methods decrease with This is because when is large, more Hence, the parametérshould not be set too small in practice.
places need to be included in a group, which in turn can violate Summary of effectiveness studyThe above observations demon-
the spatial and temporal constraints. Comparing the performancestrate the effectiveness oPSITTER. It always outperforms 61D

of the three methods,FRITTER consistently outperforms the other  and HC signibcantly under different settings. The experimental re-
two in terms of both coverage and number of patterns. We have sults and bndings are similar on the two synthetic data sets, we omit
also examined the lengths of result patterns, and found trad G them to save space.

and HC can only bnd length-2 patterns in all settings. In contrast, .

SPLITTER can discover length-3 patterng ifs not too large. When 5.4 Efbmency StUdy

I = 50, 100, 150, the number of length-3 patterns discovered by In this subsection, we compare the efbciency®fISTER, GRID
SPLITTERIS 8, 4, and 1, respectively. and HC. Unless otherwise stated, all parameters are set to their de-

Varying ! t. Figure 7(c) and 7(d) show the performance of the fault values as in Section 5.3.

three methods ast varies. The coverage and number of patterns Efbciency comparison on 4SQFigure 8 reports the running time

of these methods increase roughly linearly witl. This is intu- of the three methods on 4SQ. SinceLBr TERis a two-step method,
itive as a larget t imposes a weaker constraint on the transition we break its total running time into two parts: S-Coarse is the run-
time between consecutive groups, thus G-sequences tend to gaiming time for mining coarse patterns, and S-Rebne is the running
more support in the database. We also found that whieis small, time for discovering Pne-grained patterns from the coarse ones. We
the groups in each pattern are spatially close, but adecomes compare the running time off8ITTER, GRID and HC wherl and
larger, patterns containing faraway groups gradually appear. The! t vary. The effect of# is omitted because the running time of all
reason behind is that, whent is small, long-range movements methods changes slightly whérvaries from2 - 10° # to 10° 3.

in trajectories are eliminated. Under differént, SPLITTER still As shown in Figure 8(a), the running time of all methods de-
signibcantly outperforms the compared methods. creases with . GRID is much slower than HC andPSITTER be-
Varying #. Figure 7(e) and 7(f) show the performance of the three cause it needs to run Algorlthm 1 with 10 different density thresh-
methods a# varies from2 - 10°* to 10* ° (when# > 10°3, the old). If we run GrID with only one bxed, the effectiveness of
result patterns become not compact already). AgaiSER is GRID drops dramatically. HC also needs to run Algorithm 1 multi-
much more effective than BD and HC under differentt. An- ple times, but it is quite efpcient as it can prune the clusters that do
other interesting bnding is that, there are fewer bne-grained pat-Not appear in any frequent patterns. Comparing the performance of
terns than coarse ones for all methods, especially whisrsmall. SPLITTER and HC, $LITTER consistently outperforms HC, but

For example, whe# = 2 - 10° #, there are 79 coarse patterns, but the difference becomes less obvious wheis large. This is be-
even $LITTER only reports 34 bne-grained ones. We checked the cause when is large, only few clusters derived by HC can form
coarse patterns that have been eliminated, and found that the movefrequent patterns while most clusters are pruned, making HC very
ments in most of them are quite scattered. They do not contain anyineffective (see Figure 7(b)). Figure 8(b) shows that the running

sub-patterns that are frequent and compact, thus eliminated by thefime of all methods increases witht. SPLITTERs faster than HC
spatial constrair. when! t is small. However, its time cost increases more quickly

with ! t, and Pnally becomes larger than HC when> 150. The
reason is that wheh t is large, much more coarse patterns are dis-
covered, which makes the pattern splitting step more costly. Note
on the number of patterns because the trend is similarfoAs- that the efbciency of HC comes with the price of being ineffective

creases, the performance afISTTER Prst increases dramatically when! tis large (see Fi_gure 7(d)).
and then becomes steady. This phenomenon is expected. DuringEffects of ho and (. Figure 9 shows the effects of parameters

Effects of hp and (. Finally, we examine the effects df and(
on the performance of &ITTER. Figure 7(g) and 7(h) shows the
coverage of S8LITTER ashg and( increase (we omit their effects

the top-down splitting process, ko is too small, we will gen- o and( on the performance of &ITTER. As shown, wherho
erate many small snippet clusters even in the brst round of split- @hd( increase, the running time ofPSITTEROs brst step does not
ting. Such clusters do not meet the support thresholdor will change, while the running time of second step keeps increasing.

clusters further generated with damperredHowever, so long as  The increase witto is quite rapid, as a large makes $LITTER
execute snippet clustering more times, and makes it harder to orga-
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Figure 7: Effectiveness comparison of Splitter, Grid, and HC on 4SQ.

nize snippets intb -communities. However, as mentioned earlier, a Giannottiet al. [5] debPne th@-pattern in a collection of GPS tra-

very largehg brings no extra benebpt to the effectiveness pf1$- jectories. A T-pattern is a Region-of-Interest (Rol) sequence with
TER. Henceho does not need to be too large in practice. temporal annotations, where each Rol as a rectangle whose density
Effect of the speedup strategy. In this set of experiments, we is larger than a threshold However, their method still relies on
study the effectiveness of the divide-and-conquer strategyfforrs ~ gid space partitioning. In addition, the threshglds hard to pre-

TER. For comparison, we implemented awa version of top-down  specify for our problem: a sma)lwill lead to very coarse regions
splitting without the speedup strategy, referred to aéwdaRebne.  While alarge one may eliminate Pne-grained patterns.

As shown in Figure 10, under various Settings! ofind! t, S- Zhenget al. [18] Study the problem mining interesting travel se-
Rebne always outperforms 8ikee-Rebne signibcantly, which vali- ~ quences from GPS trajectories. They extracttoprost interest-
dates the effectiveness of the divide-and-conquer strategy. ing place sequences in a given region. Such sequences, however,

Efpciency on synthetic data setsinally, we report the efpciency are nc_)t necessarily frequent among the input trajectories. More-
over, in order to extract tom lengthn sequences, they need to

study on our synthetic data sets. Figure 11 shows tRatiSER , ;
outperforms the compared methods on both data sets. The Ioencor_enumerate all possible place sequences and compute their scores.

mance gap is more obvious on S1K, mainly because HC and G Luo et al. [9] proposed a scalable method for Pnding the most fre-

are ineffective on S10K and terminate at an early stage. For ex- q”ef_“ pgth i_n trajectory data. Given_ two nc_)des (a_ source and a
ample, when = 300, SPLITTER bnds 6 length-3 Pne-grained destination) in a road network and a time period, their method efp-

patterns on S10K, while HC andr@ bnd none ciently Pnds the most frequent path between the two nodes during

! the given time period. In contrast to their problem, we seek to bnd
Summary of efpciency study The above results demonstrate the g P P

BC; % Und f ¢ i H a complete set of Pne-grained patterns in the Euclidean space.
efbciency of SLITTER. Under a Iew parameter Setlings (when Another important line in trajectory data mining is to mine a set
and! t are large), HC may take less time thapL8r TER, but that

. . . . of objects that are frequently co-located. Efforts along this line in-
comes with the price of being much less effective. clude miningflock [7], convoy [6], swarm [8], and gathering [17]
patterns. All these patterns differ from our work in two aspects:
(1) they only model the spatio-temporal information without con-
6. RELATED WORK sidering place semantics; and (2) they require the trajectories are
Sequential pattern mining in transactional data has been exten-aligned by the absolute timestamps to discover co-located objects,
sively studied. Agrawal and Srikant [1] Prst introduce this problem While we focus on the relative time interval in a trajectory.
and employ Apriori to discover patterns. Other efbcient solutions ~ There are a few studies on mining sequential patterns in seman-
include projection-based method PrebxSpan [10] and vertical for- tic trajectories. Alvaresr al. [2] Prst identify thestops in GPS tra-
matting method SPADE [16]. However, none of these algorithms jectories, then match these stops to semantic places using a back-
can handle trajectory data due to spatial continuity. ground map. By viewing each place as an item, they extract the
Several pioneering studies [11, 12] have investigated mining se- frequent place sequences as sequential patterns. Unfortunately, due
quential patterns in spatio-temporal databases. To handle spatiafo Spatial continuity, such place-level sequential patterns can appear
continuity, they adopt the space partitioning strategy, which dis- only when the support threshold is very low. Yiagal. [15] mine
cretizes the whole space into many small grids based on a pre-sequential patterns in semantic trajectories for location prediction.
specibed granularity. Though simple and efbcient, rigid space par-They debne a sequential pattern as a sequence of semantic labels
titioning is not suitable for mining Pne-grained sequential patterns. (e.g., school— park). Such a dePnition ignores spatial and tempo-
It suffers from the sharp boundary problem, namely the locations ral information. In contrast, our Pne-grained patterns consider the
close to grid boundaries may be assigned to different grids and thusspatial, temporal and semantic dimensions simultaneously.
potential Pne-grained patterns may be lost.
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APPENDIX

Proof of Theorem 1:As f(y) is bounded, it sufbces to prove the

Case 1. Separation. When the two hyperspheres are separate,
since the new center must fall insi8g, it is ensured z—y ™V || >

' > \/2h, thus the new hyperspheredt*? cannot includez.

Case 2: Intersection.WhenS, andS; intersect, we denote by

an intersecting poin the hyperplane of intersection, ana the
pedal point ofz on H. LetX = {x1,x2,...,xn } be the points

density at the kernel window center increases after each shifting, from Ci that reside irS,. Points inX must fall inS, — S, and

namelyvk, y*™ ) > Qy®) if y* = v without
loss of generality, assumg®’ is the origin of the space, namely
y*) = 0. We denote byVi the set of points inside the window of
y®). The kernel density at') is thus
. c
= ey Wi = Ix®). @)
XN &

Denote byNi+1 the points inside the window gf**Y | and let

Noo = Nk N Ni+1 . SinceNy, C Ni+1 , We have

& (k+1 C 2 K+1 2
fo(y(”)zm wi (h? = [ly*™ —x ). ()
XN
To provef(y**9 ) > y*)), we introduce
by = wi (h? — [y —x|?) - wi (h? — || [|?)
XN XN g
= wi [|xi [|* — wi [y —xi || -
X;"N g X ;"N » x;"N SN -
Note tha$thi € Nk — N, [ly* ™ —xi||?> >h?, hence
wih? < wily*™® —x 2. (6)
X;"N L8N - Xi"N L8N -
With Equation 6! ¢ satisbes:
Ly > wi || ||? — wi [y = xi|?
Xi"N g X;"N
T 2
=2y(k+1) Wix — Hy(k+1) || Wi
X;"N g X3"N g
2
= [ly™ ) wi > 0.
Xi"N ko

Recall Equation 4 and 5, sinte; > 0, itis ensured
. . c
Ay™ ™) - Ay") > o

thus completing the proof.

'y >0,

Proof of Lemma 1:Let z be a point in any other-communities
C;,namelyl <j <tandi ¥ j. Consider two hyperspheres: (1)
S; is a radius- hypersphere centeredstand (2)Sy is a radius-

h hypersphere centered g¢. SinceSy cannot be insidé&,, the
relationships o5, andS, can be categorized into two cases.

Sz

Case 2: Intersection

Case 1: Seperation

Figure 12: Separation and intersection betweei®, and Sy .

on the opposﬂe side @, i.e., v,x. €X,(z—m) (xi —m) < 0.
With y&* = (" " wixi)/ ([, wi), we have
(z—m)"(y"" —m) = %9 Wi (z—m)' (xi —m) < 0.
i=1 =
Hence, the distance betwegmndy**V satisbes:
Iz =y |2 = ||(z — m) + (m — y*V )2

=z —m|* + m — y*™ |* +2(z — m)"(m — y*)

>|z—m|? = |z—p|* - [m—p|* > 2 —h%

Givenh <'/ /2, itisensuredjz —y**? |2 >* 2 —h? > h?,

thus the radiug sphere centered gt**¥ cannot includez. Asz
is an arbitrary data point not ii; , the window centered at(**V)
can include only points fror@; .

w;hZ. Proof of Theorem 2:Assume the hypersphereyaencompasseas

pointsA = {x1,Xa,..., xm }; the hypersphere gt encompasses
n pointsA* = {xl,Xz,...,xn} By Lemma 2, we know that
N C Cj andN* C Cj. Below, we provey 7 y' by contradiction.
Supposey = y', then the two hypersphere completely overlap,
denoted ass, . Then all points in\V" and A" must fall insideS, .
Now consider the following two cases.
Case 1:m =1 or n = 1. Without loss of generality, assume
m =1, thenwe have = y = y'. Since all the points inv* reside
in Sy, there must exist' € A" suchthafx—x'|| <h <" . This
contradicts the dePnition 6f-community because the minimum
distance betwee@; andC; must be at least.

Figure 13: HypershpereS, and Sy .

Case 22m > landn > 1. Consider an arbitrary point; €¢ N’
(1 <i < m). As shown in Figure 13, Id& be the hyperplane that
is perpendicular ty — x; and passeg. For any pointxj! e N
(1<j <n),wehave|xi —x ||>>" 2, namely

l(xi =)+ Iy =) +2(xi
It follows immediately that
2(xi—y) (y—x) > *~(xi—y) |- (y—x))]| > *~2h* > 0.

Namely(y — xi)"(y — xI ) < Oforall xI € N'. In other words,
givenx;, all points |n/\f, must fall in thq opp05|te side @f. This
contradicts the facy = oy Wi x;/ N Wi which does

-Ny—-x)>"?

not allow the points inV"* to reside in the same side Bf. There-
fore, the assumptiop = y' does not hold.



