
Evaluating Geo-Social Influence in Location-Based Social
Networks

Chao Zhang Lidan Shou Ke Chen Gang Chen Yijun Bei
College of Computer Science

Zhejiang University, China
{chaozhang, should, chenk, cg, byj}@zju.edu.cn

ABSTRACT
The emerging location-based social network (LBSN) services not
only allow people to maintain cyber links with their friends, but
also enable them to share the events happening on them at dif-
ferent locations. The geo-social correlations among event partic-
ipants make it possible to quantify mutual user influence for vari-
ous events. Such a quantification of influence could benefit a wide
spectrum of real-life applications such as targeted advertising and
viral marketing.

In this paper, we perform an in-depth analysis of the geo-social
correlations among LBSN users at event level, based on which
we address two problems: user influence evaluation and influen-
tial events discovery. To capture the geo-social closeness between
LBSN users, we propose a unified influence metric. This metric
combines a novel social proximity measure named penalized hit-
ting time, with a geographical weight function modeled by power
law distribution. We propose two approximate algorithms, namely
global iteration (GI) and dynamic neighborhood expansion (DNE),
to efficiently evaluate user influence with tight theoretical error
bounds. We then adopt the sampling technique and the threshold
algorithm to support efficient retrieval of top-K influential events.
Extensive experiments on both real-life and synthetic LBSN data
sets confirm that the proposed algorithms are effective, efficient,
and scalable.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

General Terms
Algorithms, Experimentation

Keywords
Social Network, Information Extraction, Structural Analysis

1. INTRODUCTION
With the popularity of Web 2.0 technology and the proliferation

of GPS-equipped mobile terminals, recent years have witnessed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$15.00.

enormous growth in location-based social network (LBSN) ser-
vices. These services, such as Foursquare, Facebook Places, and
Google Latitude, not only allow one to maintain cyber links with
other users, but also enable one to share one’s events/activities hap-
pening at certain locations in various forms. To give a few exam-
ples, a Foursquare user may check-in at a newly opened golf court,
and an Apple fan may post a geo-tagged tweet when she is shop-
ping at an Apple store. Such events are being created and shared
everywhere and every second in LBSNs. Foursquare, as a repre-
sentative LBSN, has hit a whopping 2 billion check-ins since its
foundation in 2009, and millions of new check-ins are still being
added every day [1].

Among the numerous LBSN events, some exhibit strong geo-
graphical and social correlations among their participants, while
others do not. Figure 1 shows the respective participants of three
events in an illustrative LBSN, where each circle represents a user
and its color indicates if he/she has participated in that event. We
can observe that (1) the iPhone users (the green ones in Figure 1(a))
are socially connected and geographically close to each other; (2)
the KFC users are faraway from each other both socially and geo-
graphically; (3) the golf users are socially close but geographically
faraway.

Such different geo-social correlations motivate us to study the
mutual influence between social relation and geographical distance
for LBSN events. In Figure 1, if an iPhone user, say u2, happens
to find a new product at an Apple store in her vicinity, her posted
information is likely to spread out across the community and drive
nearby Apple fans (u1 and u3) to the same store. On the contrary,
if a KFC or golf user creates a related post, the others may be less
influenced, either because the information cannot reach them or the
location of the attraction is too far.

The above description leads to the following observations. On
one hand, the social links facilitate the propagation of user-generated
information in the network. Therefore, events happening in one’s
close ties are likely to cause participation [3, 22]. On the other
hand, the geographical distance plays a role (either strong or weak)
in determining the users’ physical activities. Intuitively, people
tend to visit nearby places rather than distant ones in practice [12,
8, 24]. However, the impact of distance on the tendency of partic-
ipation is undefined. To date, no previous study has addressed the
aforementioned mutual influence.

In this paper, we perform an in-depth analysis of the geographi-
cal and social correlations among LBSN users for different events,
and attempt to seek the answers to the following two interesting
questions:

1. User Influence Evaluation: Given a set of LBSN users at-
tributed with a common event, how to quantify the geo-social
influence of one user to the others?

u
1

u
3

u
8

u
7

u
6

u
5

u
4

u
2

(a) iPhone

u
1

u
3

u
8

u
7

u
6

u
5

u
4

u
2

(b) KFC

u
1

u
3

u
8

u
7

u
6

u
5

u
4

u
2

(c) golf

Figure 1: User states of three LBSN events (The green circles denote the participants of each event).

2. Influential Events Discovery: Given a set of events, how
to find influential events, i.e., the events for which one user
exerts strong influence to the others?

Not difficult to imagine, the evaluation of geo-social influence
can benefit a wide spectrum of real-life applications. Let us look
at one example, an Apple store in New York wants to promote the
sales of a newly released product (e.g., iPhone 5). By analyzing
the mutual geo-social influences among iPhone users, it can simply
target the local influential users and send coupons to them. If these
users post relevant information on-line, many other iPhone fans are
likely to be attracted to the store for that new product. Compared
with existing social influence analysis methods [22, 11, 4], the most
distinguishing characteristic in the geo-social influence evaluation
process is the need to consider geographical distances among users.
If a user u in New York has many social friends, but most of them
live in Los Angeles, then u should not be regarded as influential:
few of u’s friends will be affected by u’s post, because the store
near u is too far for them. As another example, marketers can pro-
mote products relevant to influential events, because the users of
such events are typically close to each other in both geographical
space and social space, thus the sales are expected to be elevated
virally due to the intrinsic geo-social correlations.

Although a number of studies have analyzed the mutual user
influence in social networks [22, 2, 3, 11, 4], none of the pro-
posed techniques are capable of quantifying geo-social influence
for events. The reasons are threefold: First, these studies typically
perform social influence analysis in a global setting without con-
sidering the events associated with each user. Second, while the
information generated by one LBSN user may reach another via d-
ifferent social paths, the influence analysis in the previous studies
is usually confined to direct social links. Third, these studies fail
to take into account the geographical distance between two users.
In practice, however, people are more likely to visit nearby places
rather than distant ones, indicating a clear need to explore the im-
pact posed by geographical distance.

Our Contributions. In this paper, we provide a unified user influ-
ence metric which tightly combines social proximity and geograph-
ical mobility features of LBSN users. On the social side, we pro-
pose a modified version of the hitting time measure, named penal-
ized hitting time (PHT), to quantify the social proximity between
LBSN users. Hitting time is a random-walk-based graph proximity
measure which has been shown to be effective for link prediction
[17], query suggestion [18], graph clustering [7], and so on. How-
ever, it is sensitive to long paths and tends to benefit popular entities
[17, 19, 20]. Our PHT measure intrinsically avoids this drawback,
owing to a nice property that the path weight is exponentially penal-
ized by path length and thus short paths are given more priority. On
the geographical side, we explore the mobility patterns of the user-

s based on a real-life LBSN data set. The statistical results show
that physical distance does play an essential role in determining the
mobility behaviors of a user, and the geographical influence with
regard to distance can be well modeled by power law distribution.

The computation of PHT is a challenging task, due to the fact
that PHT takes account of all social paths between two LBSN user-
s. As we will see, directly computing the PHT between two users
takes O(n3) time (n is the total number of LBSN users), which
is intolerable for large LBSNs. In view of this problem, we pro-
pose two approximate algorithms, namely the global iteration (GI)
and dynamic neighborhood expansion (DNE) algorithms. Both al-
gorithms work efficiently when computing PHT, and meanwhile
ensure tight theoretical error bounds. In particular, the DNE algo-
rithm can compute PHT in constant time regardless of LBSN size.

Relying on the user influence metric, we measure the influence
of an event by aggregating the influences of event users, and investi-
gate two specific aggregate functions, namely MAX and AVERAGE.
Not surprisingly, the discovery of influential events is not trivial ei-
ther, especially when the number of event users and the number of
LBSN events are both large. We employ the sampling technique
to avoid computing geo-social influence for each user when esti-
mating event score, and adopt the threshold algorithm to efficiently
retrieve top-K influential events.

We have conducted extensive experiments on both real-life and
synthetic LBSN data sets. The experimental results confirm the ef-
fectiveness and efficiency of our proposed algorithms. Specifically,
for the user influence evaluation problem, GI and DNE outperform
existing solutions in running time by a factor up to an order of mag-
nitude; for the influential events discovery problem, the sampling
and threshold techniques work effectively for discovering top-K
influential events, with many interesting findings.

Organization. The rest of this paper is organized as follows. We
review related work in Section 2 and formally define our problems
in Section 3. In Section 4 and 5, we present algorithms for evaluat-
ing user influence and discovering influential events, respectively.
We study the empirical performance of the proposed algorithms in
Section 6, and finally conclude the paper in Section 7.

2. RELATED WORK
Generally, existing approaches relevant to our work fall into three

categories: social influence analysis, LBSN mining, and graph prox-
imity computation.

Social Influence Analysis. So far, many studies have investigated
the influence of a single node in social networks. In a number of
papers, it is believed that influence is relevant to the structural roles
of the target nodes and their topological interactions with the un-
derlying social network, and thus social influences can be derived
with link analysis, e.g., PageRank [6] and HITS [16]. Many other s-

tudies attempted to estimate social influence by exploring historical
user data such as blogs [2] and tweets [4]. All these studies ana-
lyzed social influence in a global setting without considering node
attributes. In contrast, we compute social influence at event level
and provide a finely grained capture of influence strength. Tang et
al. [23] also found social influences could vary greatly across d-
ifferent topics and performed topical influence computation using
probabilistic model. Our social influence analysis significantly d-
iffers from their work in that we associate each node with a set
of discrete events based on ground-truth LBSN data, rather than a
probabilistic latent topic distribution.

The interaction between social influence and structural correla-
tion has also been extensively studied in literature. Specifically,
Anagnostopoulos et al. [3] proposed to distinguish influence from
other correlation factors based on temporal analysis of Flicker us-
er behaviors. La Fond et al. [11] performed randomization tests
for distinguishing influence and homophily in temporal social net-
works. Guan et al. [13] studied the problem of assessing structural
correlations on event-level granularity. The focuses of these studies
are to determine the existence of social correlation or identify in-
fluence hidden behind correlation, whereas we attempt to quantify
the strength of influence.

LBSN Mining. Recently, with the rise of on-line LBSN services,
researchers have paid much attention to mining LBSN. To name
a few, Cho et al. [8] modeled user location as a dynamic Gaus-
sian mixture and employed a generative approach to postulate the
mobility pattern of an individual, Scellato et al. [21] exploited ge-
ographical features to address the link prediction problem, and Ye
et al. [24] incorporated distance information into traditional col-
laborative filtering framework for friend recommendation. These
studies demonstrated that geographical distance could serve as a
useful source for various mining tasks. Unfortunately, none of them
attempted to fuse physical proximity with cyber connection to eval-
uate influences among LBSN users.

Graph Proximity Computation. Hitting time and its variants [19,
20] have been proposed and successfully used for link prediction
[17], product recommendation [5], query suggestion [18], graph
clustering [7], etc. These studies exploited the fact that hitting time
captures the holistic feature of the underlying network and is quite
robust to noise. However, it is also demonstrated that hitting time
is sensitive to long paths and tends to benefit popular entities [17,
19, 20]. Our PHT measure, instead, has a nice property that the
path weight is exponentially dampened by the path length, and thus
intrinsically avoids this drawback. It is worth mentioning that al-
though the decayed hitting time measure proposed by Guan et al.
[13] also has this property, it can be viewed as a special case of
PHT wherein the dampening parameter is fixed at e−1.

A number of other graph proximity measures have also been pro-
posed. In specific, Jaccard’s coefficient is defined as the number of
the common neighbors of two given vertices divided by the num-
ber of their distinct neighbors. The limitation of this measure is that
it only considers the direct neighborhood of a vertex. In contrast,
Katz [15] avoids this problem by summing over the collection of
paths between two vertices, and the weight of a path decays expo-
nentially with its length so that small paths are given more weight.
Personalized PageRank [14] is another random-walk-based graph
proximity, which biases the probability distribution of PageRank
towards a set of pre-specified graph vertices. Although we adop-
t the PHT measure in this work, the proposed framework can be
extended to compute social influence under the above proximity
measures.

3. PRELIMINARIES
In this section, we provide some preliminaries for evaluating

geo-social influence in LBSN. In what follows, we introduce the
concept of penalized hitting time in Section 3.1, conduct geograph-
ical influence analysis in Section 3.2, and formulate our problems
in Section 3.3. Table 1 lists the notations used in the rest of this
paper.

Table 1: Notations used in the paper.
Description

G A location-based social network.
VG The vertex set of G.
EG The edge set of G.
Se The set of users on which event e has happened.
lu The location of an LBSN user u ∈ VG.

3.1 Penalized Hitting Time
Given an event e, let u and v be two LBSN users in Se, we ana-

lyze the social influence of u to v from a random walk perspective.
A random walk in G is defined as follows: a user starts from vertex
x0 ∈ VG and randomly moves to its neighbors, if at step t the user
is at vertex xt = i, then in the next step she moves to i’s neighbor
j with probability proportional to the weight wij , namely:

pij = Pr(xt+1 = j|xt = i) =
wij

di

where di =
∑n

j=1 wij is the degree of vertex i. Clearly, the se-
quence {xt} forms a Markov chain. We use P = [pij]n×n to
denote the transition probability matrix of this Markov chain, so
that pij =

wij

di
if (i, j) ∈ EG and zero otherwise.

v

u

Figure 2: Random walk in the social network.

Now consider a user performing a random walk from v, the user
may hit u along various paths, as shown in Figure 2. Let L be the
path along which v hits u for the first time, satisfying |L| = h. We
assign a weight τh to L where τ(0 < τ < 1) is an attenuation
parameter. In other words, the weight of L is exponentially damp-
ened by its length, and thus short paths are made more important.
The rationale behind is that people are more likely to be affected by
their friends, rather than people socially faraway. Hence, two graph
vertices are considered socially close if there are many short paths
connecting them. Based on this observation, we define the penal-
ized hitting time (PHT) as the expected path weight of the random
walk that starts from v and hits u for the first time.

DEFINITION 1. Let u and v be two LBSN users in VG, given an
attenuation parameter τ ∈ (0, 1), the penalized hitting time from v
to u is

su(v) =
∞∑

h=1

τhPr(Hu = h|x0 = v)

where Pr(Hu = h|x0 = v) is the probability that the random
walk starting from v first hits u after h steps.

3.2 Geographical Mobility Pattern Analysis
To analyze the geographical influence posed by physical dis-

tance, we have crawled a real LBSN data set from Gowalla1 dur-
ing a three-month period. We find that the users’ mobility patterns
are significantly influenced by geographical distance. Specifical-
ly, a user is more likely to visit a POI if that POI is not faraway
from him. To better understand this, we calculate the distances be-
tween all pairs of two consecutive check-ins and plot a histogram,
as shown in Figure 3. Not difficult to observe, the log-scale check-
in probability is approximately linear to the log-scale geographi-
cal distance. The geographical influence can therefore be suitably
modeled as a power law distribution w.r.t. geographical distance.

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 10 100 1000 10000

C
he

ck
-in

 p
ro

ba
bi

lit
y

Geographical distance (km)

Figure 3: Check-in probability vs. geographical distance.

DEFINITION 2. Given two users u and v, let ||lu − lv|| be the
geographical distance between u and v, we define the geographical
influence of u to v as:

gu(v) =

{
α · ||lu − lv||β for ||lu − lv|| > α−1/β

1 for ||lu − lv|| ≤ α−1/β (1)

where α and β are the parameters of a power law distribution.

Remark. The geographical influence gu(v) could be interpreted in
the following way: u and v are two users attributed with a common
event (e.g., playing golf), if u creates a post related to a golf court
near him and v knows this via the LBSN, given the distance of u
and v, how likely would v also pay a visit to the golf court?

3.3 Problem Definition
The PHT measure captures the social proximity between LBSN

users and the power law distribution models their physical interac-
tions. We combine them to derive a unified geo-social influence
metric.

DEFINITION 3. Let u and v be two LBSN users attributed with
a common event, the geo-social influence of u to v is given by:

fu(v) = su(v) · gu(v)

Relying on the unified influence metric, we are now ready to
formulate the user influence evaluation and influential events dis-
covery problems.

PROBLEM 1. (User Influence Evaluation) Given an event e
and its user set Se, evaluate the geo-social influence of user u ∈ Se

to all the other users in Se:

fu(Se) =
∑

v∈Se−{u}
fu(v)

1http://en.wikipedia.org/wiki/Gowalla

PROBLEM 2. (Influential Events Discovery) Given an even-
t collection C, retrieve K events from C with the largest event s-
cores. The score of an event e is defined as the aggregate user
influence of the users in Se:

score(e) = AGGu∈Sefu(Se)

where AGG can be the aggregate function MAX or AVERAGE.

4. USER INFLUENCE EVALUATION
In this section, we discuss how to derive the influence of one

user. Below, we first provide the GI and DNE algorithms for com-
puting PHT in Section 4.1, and then investigate the computation of
geographical influence in Section 4.2.

4.1 Computing Penalized Hitting Time

4.1.1 The GI Algorithm
Given two users u and v, the PHT su(v) is the expected path

weight of the random walk that starts from v and first hits u. Nat-
urally, we could compute su(v) in a one step look-ahead fashion:
consuming one step to move to v’s neighbors and then summing up
their PHTs. Accordingly, we have:

su(v) =

∞∑
h=1

τhPr(Hu = h|x0 = v)

=

∞∑
h=1

τh
∑

w∈VG

pvwPr(Hu = h− 1|x0 = w)

= τ
∑

w∈VG

pvwsu(w)

Hence, the following recurrence relation holds for any user v ∈
VG.

su(v) =

{
τ

∑
w∈VG

pvwsu(w) for v �= u

1 for v = u
(2)

Let Pu be a modification of the original transition matrix P
where the entries in the row corresponding to u are set to all ze-
ros; su be a n× 1 vector (n = |VG|) where su(v) is the PHT from
v to u; and cu be a n× 1 vector with the element corresponding to
u set to 1, and all other elements to 0. Then the recurrence relation
leads to a linear system consisting of n equations:

su = τPusu + cu (3)

Now, the problem of computing the PHT of every user v ∈ VG to
u is reduced to solving Equation 3 to obtain the vector su. Unfortu-
nately, the time complexity of solving the linear system is O(n3),
which is prohibitive for large LBSNs containing millions of users.

Algorithm 1: GlobalIteration(Pu, cu, τ, k)

1 Initialize s
(0)
u = cu

2 for i = 1 to k do
3 s

(i)
u = τPus

(i−1)
u + cu

4 return s
(k)
u

To overcome this problem, we propose the global iteration (GI)
algorithm to obtain approximate PHTs. The idea is to assign an
arbitrary PHT value for each user in VG, and then iterate over the
linear system for a few times. As shown in Algorithm 1, we choose

cu as an initial PHT vector. Then, we substitute s
(i)
u into Equation

3 and get the next-round PHT vector. After iterating for k rounds,
we output s(k)u as the resulting PHT vector. In the following, we
prove the GI algorithm will converge to the exact value of su if k
is large enough, and give an analytical error bound of s(k)u .

THEOREM 1. The iterative process will converge to the exact
value of su if k → ∞.

PROOF. Let T = τPu, the l∞ natural norm of T is

||T||∞ = max
1≤i≤n

∑
j

|Tij | = τ.

Then the spectral radius of T satisfies ρ(T) ≤ ||T||∞ < 1.
With Equation 3, we have the k-th round value of s(k)u :

s(k)u = Ts(k−1) + cu

= T(Ts(k−2) + cu) + cu

· · ·
= Tks(0)u + (Tk−1 + · · ·+T+ I)cu

Since ρ(T) < 1, the matrix T is convergent and lim
k→∞

Tks
(0)
u = 0,

which ensures that:

lim
k→∞

s(k)u = (

∞∑
i=0

Ti)cu = (I−T)−1cu

Hence, the sequence {s(k)u } converges to (I−T)−1cu, which
is exactly the solution of Equation 3.

THEOREM 2. Let s(i)u be the i-th round estimation of su. ∀v ∈
VG, |su(v)− s

(k)
u (v)| ≤ τk

1−τ
max
w∈VG

|s(1)u (w)− s
(0)
u (w)|.

PROOF. ∀k ≥ 1, we have s
(k+1)
u − s

(k)
u = T(s

(k)
u − s

(k−1)
u).

Let || · || be the l∞ natural norm, then:

||s(k+1)
u −s(k)u || ≤ ||T||·||s(k)u −s(k−1)

u || · · · ≤ ||T||k·||s(1)u −s(0)u ||.
Thus, ∀m > k, we have:

||s(m)
u − s(k)u || = ||

m−1∑
i=k

(s(i+1)
u − s(i)u)||

≤
m−1∑
i=k

||(s(i+1)
u − s(i)u)||

≤ ||T||k · ||s(1)u − s(0)u || · (
m−k−1∑

i=0

||T||i)

= ||T||k · ||s(1)u − s(0)u || · 1− ||T||m−k

1− ||T||
We know that lim

m→∞
s
(m)
u = su and ||T|| = τ , thus:

||su − s(k)u || = lim
m→∞

||s(m)
u − s(k)u || ≤ τk

1− τ
· ||s(1)u − s(0)u ||

which completes the proof.

4.1.2 The DNE Algorithm
The GI algorithm reduces the complexity of PHT computation

from O(|VG|3) to O(k|EG|). However, the performance of GI is
still not the best one can hope for. Indeed, for LBSNs involving mil-
lions of users, a single matrix-vector multiplication could be quite

expensive, making it really necessary to design a more efficient and
scalable solution. Below, we propose another, more efficient algo-
rithm called dynamic neighborhood expansion (DNE), which can
compute PHT in constant time with a tight theoretical error bound.

As stated above, the major problem of GI is that it needs to per-
form matrix-vector multiplications over the entire LBSN. We ar-
gue that the PHTs of the users socially faraway from u are actually
negligible as the weight of a path is exponentially dampened by its
length. Based on this observation, DNE performs PHT computa-
tion in two phases: (1) In the first phase named expansion-update,
DNE starts from u and incrementally expands u’s neighborhood to
incorporate users that are close to u, and obtains their PHTs using
the recurrence relation (Equation 2). Such a process continues un-
til the cardinality of u’s neighborhood is large enough to ensure a
small approximation error. (2) In the second phase named refine-
ment, DNE performs a few iterations (Equation 2) over the neigh-
borhood vertices to refine their PHTs. The PHTs of vertices outside
u’s neighborhood are set to zeros and do not need to be computed
at all.

Let Nu be the set of vertices that have been incorporated into
u’s neighborhood, and Bu ⊆ Nu be the set of boundary vertices
(“boundary” means the vertex has at least one neighbor not in Nu).
A fundamental issue in the first phase is: which vertex in Bu should
be chosen to expand in each round? We adopt the best-first strategy
and choose the vertex with the largest PHT in Bu. The rationale be-
hind is twofold: First, for a vertex with large PHT, its neighbors are
also likely to have large PHTs (Equation 2). The best-first manner
thus gives priority to vertices with high PHTs and inclines to ignore
unimportant vertices. Second, soon we will see, the approximation
error of DNE is determined by the vertex with the largest PHT in
Bu. By eliminating it, DNE can produce a better approximation
after each expansion.

Algorithm 2: DNE(Pu, cu, τ,m, k)

1 Initialize Nu = {u}, Bu = {u}, ŝ(0)u = cu
2 while |Nu| < m and Bu �= ∅ do

// Expansion

3 Remove w from Bu where ŝ
(0)
u (w) = max

v∈Bu

ŝ
(0)
u (v)

4 foreach in-neighbor v of w do
5 if w /∈ Nu then
6 Add w into Nu

7 foreach in-neighbor v of w do
8 if w has any in-neighbor not in Nu then
9 Add w into Bu

// Update
10 foreach v ∈ Nu do
11 ŝ

(0)
u (v) = τ

∑
w∈VG

pvw ŝ
(0)
u (w) + cu(v)

// Refinement
12 for i = 1 to k do
13 foreach v ∈ Nu do
14 ŝ

(i)
u (v) = τ

∑
w∈VG

pvw ŝ
(i−1)
u (w) + cu(v)

15 return ŝ
(k)
u

Algorithm 2 presents the details of the DNE algorithm. As shown,
we initialize Nu with {u} and incrementally expand Nu until it-
s cardinality reaches a pre-defined number m. Each expansion is

directed by the best-first strategy such that the vertex with largest
PHT in Bu is selected and its neighbors are added into Nu. In the
refinement phase, we iterate over the vertices in Nu for k times and
finally output ŝ(k)u . Let ŝu be the ideal PHT vector by ignoring all
vertices not in Nu, it is worth mentioning that the output of DNE
is actually the k-th round estimation2 of ŝu.

Figure 4 gives an example of the DNE algorithm with τ = 0.6.
We use dark circles to denote the vertices that have been incor-
porated into Nu. Among them, the ringed ones denote the ver-
tices that are in Bu. To compute the PHTs of all vertices to u,
the DNE algorithm executes the following steps: (1) Initialization:
su(u) = 1. (2) Expand u and update: su(u) = 1, su(v1) =
0.2, su(v2) = 0.6, su(v3) = 0.3, su(v4) = 0.15. (3) Expand v3
and update: su(u) = 1, su(v1) = 0.2, su(v2) = 0.6, su(v3) =
0.3, su(v4) = 0.15, su(v5) = 0.18. (4) Expand v1 and update:
su(u) = 1, su(v1) = 0.2, su(v2) = 0.6, su(v3) = 0.354, su(v4) =
0.15, su(v5) = 0.18, su(v6) = 0.06, su(v7) = 0.06. (5) Re-
fine PHTs for 10 times: su(u) = 1, su(v1) = 0.227, su(v2) =
0.6, su(v3) = 0.366, su(v4) = 0.15, su(v5) = 0.219, su(v6) =
0.068, su(v7) = 0.068.

11

5

8

327

U 15

14

1

6

13

4

9

12

10

(a) #0 round

11

5

8

327

U 15

14

1

6

13

4

9

12

10

(b) #1 round

11

5

8

327

U 15

14

1

6

13

4

9

12

10

(c) #2 round

11

5

8

327

U 15

14

1

6

13

4

9

12

10

(d) #3 round

Figure 4: An example of the DNE algorithm.

Suppose the average degree of each vertex in VG is δ. Then the
complexity of the expansion-update phase is O(δ2 + 2δ2 + · · · +
m
δ
δ2) = O(m2), and that of the refinement phase is O(mkδ).

The total complexity of the DNE algorithm is thus O(m2 +mkδ).
While it saves vast amounts of computation cost, the question is:
how well does DNE approximate the PHTs of all vertices? Below,
we provide a theoretical error bound for DNE.

LEMMA 1. ∀v ∈ VG, it is ensured ŝu(v) ≤ su(v).

PROOF. Let P′
u be a modification of Pu where the row entries

corresponding to vertices not in Nu are set to all zeros, then we
have ŝu = τP′

uŝu + cu. Let T′ = τP′
u, then its spectral radius

satisfies ρ(T′) ≤ ||T′||∞ < 1. Following the same manner as in
the proof of Theorem 1, we obtain:⎧⎨⎩ ŝu = lim

k→∞
(T′k + · · ·+T′ + I)cu

su = lim
k→∞

(Tk + · · ·+T+ I)cu

∀k ≥ 0, we have T′kcu ≤ Tkcu. Hence, ∀v ∈ VG, it is
ensured that ŝu(v) ≤ su(v).
2And ŝ

(k)
u = ŝu when k → ∞.

LEMMA 2. Let M = max
v∈Bu

su(v), and Ou be the set of vertices

not in Nu, then ∀v ∈ Ou, su(v)− ŝu(v) ≤ τM.

PROOF. Since ∀v ∈ Ou, ŝu(v) = 0, it suffices to prove su(v) ≤
τM. We construct a matrix PB for vertices in Ou∪Bu, where the
rows of vertices in Ou stay the same as in P, and the rows of ver-
tices in Bu are set to all zeros. In addition, we construct a column
vector cB where the entries of vertices in Ou are set to zeros, and
the entries of vertices in Bu are set to their accurate PHTs.

As the PHTs of all vertices in Ou are gained from the vertices in
Bu, the accurate PHTs of vertices in Ou∪Bu satisfy s = τPBs+
cB . Again, the solution of this linear system can be obtained with
the iterative technique, namely s(k) = τPBs

(k−1) + cB and s =
lim
k→∞

s(k).

Let s(0) = cB , then ∀v ∈ Ou ∪Bu, s
(0)(v) ≤ M. Moreover, if

∀v ∈ Ou∪Bu, s
(k)(v) ≤ M, it is ensured ∀v ∈ Ou, s

(k+1)(v) ≤
τM. Hence, ∀v ∈ Ou, we have su(v) = lim

k→∞
s(k)(v) ≤ τM,

thus completing the proof.

LEMMA 3. Let M = max
v∈Bu

su(v), then ∀v ∈ Nu, su(v) −
ŝu(v) ≤ τ2M.

PROOF. Let Δsu be a n × 1 vector where Δsu(v) = su(v) −
ŝu(v). We construct another n × 1 vector Δc, where the entries
of vertices in Ou are set to their accurate PHTs and the entries
of vertices in Nu are set to zeros. Since the PHT errors for al-
l vertices in Nu are all caused by vertices in Ou, Δsu satisfies
Δsu = τP′

uΔsu +Δc.
The solution of this linear system is given by the iterative repre-

sentation Δsu = lim
k→∞

Δs
(k)
u . We set Δs

(0)
u = Δc, then ∀v ∈

VG,Δs
(0)
u (v) ≤ τM. In addition, if ∀v ∈ VG,Δs

(k)
u (v) ≤

τM, then ∀v ∈ Nu,Δs
(k+1)
u (v) ≤ τ2M. We thus have ∀v ∈

Nu,Δsu(v) = lim
k→∞

Δs
(k)
u (v) ≤ τ2M.

THEOREM 3. Let M̂(k) = max
v∈Bu

ŝ
(k)
u (v), and that λ = τk

1−τ
·

max
v∈VG

(ŝ
(1)
u (v)− ŝ

(0)
u (v)). Given any vertex v, we have:

su(v)− ŝ(k)u (v) ≤
{

τ
1−τ2 (M̂(k) + λ) for v /∈ Nu

τ2

1−τ2 (M̂(k) + λ) + λ for v ∈ Nu

PROOF. Let w ∈ Bu be the vertex corresponding to M =

max
v∈Bu

su(v); and M̂ = max
v∈Bu

ŝu(v). By Lemma 3, we know M−
ŝu(w) ≤ τ2M, which can be transformed to

M ≤ 1

1− τ2
ŝu(w) ≤ 1

1− τ2
M̂.

Meanwhile, following the same manner as in the proof of Theo-
rem 2, for any vertex in VG, we have

ŝu(v)− ŝ(k)u (v) ≤ λ (4)

(1)With Lemma 2, we obtain ∀v /∈ Nu, su(v) − ŝ
(k)
u (v) =

su(v) − ŝu(v) ≤ τM ≤ τ
1−τ2 M̂. According to Equation 4, it is

ensured M̂−M̂(k) ≤ λ. Thus, su(v)− ŝ
(k)
u (v) ≤ τ

1−τ2 (M̂(k)+

λ). (2)With Lemma 3, we have ∀v ∈ Nu, su(v) − ŝu(v) ≤
τ2M ≤ τ2

1−τ2 (M̂(k) + λ). Substituting Equation 4 in, we have

su(v)− ŝ
(k)
u (v) ≤ τ2

1−τ2 (M̂(k) + λ) + λ.

4.2 Computing Geographic Influence
The computation of geographical influence is quite straightfor-

ward so long as the parameters α and β in Equation 1 are known.
In this section, we use ridge regression to estimate α and β. To
achieve this, we first need to transform Equation 1 into log-log s-
cale:

log gu(v) = logα+ β log ||lu − lv||
Let y = log gu(v), x = log ||lu − lv||, ω0 = logα, and ω1 = β,
then the above equation becomes y = ω0 + ω1x. We employ the
least square error as the loss function, namely:

E(ω) =
1

2

n∑
i=1

(y − ti)
2 +

λ

2
||ω||2

Here, n is the number of histogram points, ti is the ground truth
probability of point i , and λ is the regularization term to avoid
overfitting. The optimal values of ω0 and ω1 can be obtained as
opt{ω0, ω1} = argω0,ω1

minE(ω). Accordingly, α and β can be
derived as α = 10ω0 and β = ω1.

5. INFLUENTIAL EVENTS DISCOVERY
Up to now, we have restricted our discussion to the user influ-

ence evaluation problem. In this section, we address the influen-
tial events discovery problem. Recall that the score of an event e
is defined as the aggregate (MAX or AVERAGE) user influence of
the users in Se. To retrieve top-K influential events from an event
collection C, the straightforward way is as follows: First, we com-
pute the influence of each user in Se, and derive their aggregate
influence as e’s score. Then, by computing the score of each event
ei ∈ C, we can find out K events with the largest scores. How-
ever, such a straightforward solution may be inefficient when the
cardinalities of Se and C are both high. In view of this problem,
we exploit the sampling technique and the threshold algorithm to
speed up the discovery of top-K events.

When computing the score of one event, we adopt the standard
Monte Carlo sampling scheme. To be more specific, given an event
e, we randomly pick c users from Se and compute the influences
of these c users. Then, we obtain their aggregate influence as an
estimate of score(e). Below, we provide the lower bound of c to
obtain an ε-correct answer for score(e) when the aggregate func-
tion AVERAGE is used.

THEOREM 4. Suppose we randomly select c users from Se to
estimate the average influence score of e, to ensure Pr(|score(e)−
̂score(e)| ≤ ε) ≥ 1 − δ, the number of samples c must satisfy

c ≥ 1
2ε2

ln 2
δ

.

PROOF. According to Hoeffding’s inequality, we have

Pr(|score(e)− ̂score(e)| ≤ ε) ≥ 1− 2e−2cε2 .

Setting 1− 2e−2cε2 ≥ 1− δ, we get c ≥ 1
2ε2

ln 2
δ

.

To avoid computing influence score for every event in C when
retrieving top-K influential events, we adopt the threshold algorith-
m [10]. The key observation is that, the geo-social influence of one
LBSN user to another must not exceed τ . Thus, for an event e, its
score will never be larger than τ(|Se| − 1). Based on this observa-
tion, Algorithm 3 gives the details of the threshold algorithm. As
shown, we first build a list L of all LBSN events, sorted in the de-
scending order of cardinality. Then we initialize an empty result set
A with a fixed size k, and keep track of the least ranking score in
A as threshold. Next, we scan L sequentially and progressively

update A. The tricky part is that L is unnecessary to be scanned
entirely. For the event e currently being processed, if τ(|Se| − 1)
is below threshold, it is ensured the score of any following event
will be below threshold as well. Thus, further scanning will not
generate top-K results any more and the algorithm safely termi-
nates.

Algorithm 3: getTopKEvents(G,K)

1 Build a list L of all events in G
2 Sort L in the descending order of event cardinality
3 Initialize an empty set A of a fixed size K
4 foreach event e in L do
5 threshold = the least influence score in A
6 if |A| = k and τ(|Se| − 1) ≤ threshold then
7 break
8 Compute score(e) with sampling technique
9 if |A| < k or score(e) > threshold then

10 Update A with e

11 return A

6. EXPERIMENTS
In this section, we empirically evaluate the effectiveness and

efficiency of the proposed algorithms. First in Section 6.1, we
demonstrate the effectiveness of our geo-social influence evalua-
tion framework with a toy example. Then we examine the perfor-
mance of the proposed algorithms on a real-life LBSN data set in
Section 6.2. Finally, we study the scalability of the algorithms with
synthetic data sets in Section 6.3. All algorithms were implement-
ed in JAVA and the experiments were conducted on an Intel Core 2
Duo 2.93Ghz PC with 4GB memory.

6.1 A Toy Example
We first apply our geo-social influence computation framework

to the running examples described in Figure 1, and see if the pro-
posed measures can indeed effectively compute user influence and
discover influential LBSN events. We run the GI algorithm with the
attenuation parameter τ = 0.5, and the iteration number k = 20.
Meanwhile, we compute geographical influence with the parame-
ters α = 6.0, β = −1.45 (obtained from Figure 3). Table 2 reports
the social and geographical influence of each user, as well as the
scores of the three events iPhone, KFC and Golf. Recall that, given
an event e and its user set Se, there are two versions of event score,
depending on different aggregate functions (MAX or AVERAGE).
We denote by M-score the maximum user influence of the users in
Se, by A-score the average user influence of the users in Se.

We can see, user u2 has the largest geo-social influence to the
other users. This agrees with our intuition that u2 can be easily hit
by u1 and u3, and since their geographical distances are small, u1

and u3 are likely to visit the Apple store near u2. Among the three
events, iPhone has the largest score since its users are close both
geographically and socially. In contrast, KFC has low social and
geographical scores as its users scatter randomly in the LBSN. Golf
has high social influence but relatively low geographical influence,
due to the fact that although its users are socially close, they are
distant to each other geographically.

6.2 Performance Study
In this subsection, we evaluate the performance of our proposed

algorithms based on a large real data set obtained from Gowal-
la. We crawled this data set during a three-month period between

Table 2: Geo-social influences of iPhone, KFC, and Golf users.
Event User Social Influence User Geographic Influence User Influence M-Score A-Score

iPhone
su1 (u2) = 0.208, su1 (u3) = 0.211 gu1 (u2) = 0.915, gu1 (u3) = 0.915 fu1 = 0.383

0.490 0.453su2 (u1) = 0.307, su2 (u3) = 0.229 gu2 (u1) = 0.915, gu2 (u3) = 0.915 fu2 = 0.490
su3 (u1) = 0.306, su3 (u2) = 0.225 gu3 (u1) = 0.915, gu3 (u2) = 0.915 fu3 = 0.486

KFC
su2 (u5) = 0.027, su2 (v7) = 0.057 gu2 (u5) = 0.445, gu2 (u7) = 0.162 fu2 = 0.021

0.021 0.017su5 (u2) = 0.018, su5 (u7) = 0.057 gu5 (u2) = 0.445, gu5 (u7) = 0.162 fu5 = 0.017
su7 (u2) = 0.038, su7 (u5) = 0.057 gu7 (u2) = 0.162, gu7 (u5) = 0.162 fu7 = 0.015

Golf
su6 (u7) = 0.306, su6 (u8) = 0.225 gu6 (u7) = 0.255, gu6 (u8) = 0.162 fu6 = 0.114

0.114 0.109su7 (u6) = 0.211, su7 (u8) = 0.208 gu7 (u6) = 0.255, gu7 (u8) = 0.255 fu7 = 0.107
su8 (u6) = 0.229, su8 (u7) = 0.307 gu8 (u6) = 0.255, gu8 (u7) = 0.162 fu8 = 0.108

 0

 0.01

 0.02

 0.03

 0.04

 2 4 6 8 10

B
ia

s

Number of iterations

GI

(a) GI convergence

 0

 0.01

 0.02

 0.03

 0.04

 1000 2000 3000 4000 5000

B
ia

s

Cardinality of Neighborhood

DNE

(b) DNE convergence

Figure 5: The convergence of GI and DNE (τ = 0.5).

September 2011 and December 2011. There are 329839 users with
1679245 undirected social links among them, those users have al-
together visited 2973453 distinct POIs. We consider each POI as
an event and the users who have checked-in at the POI as the par-
ticipants of that event. The location where a user most recently
checked-in is regarded as his location.

6.2.1 Performance of PHT Computation
We study the performance of the GI and DNE algorithms for

computing PHT under two performance metrics, namely time and
bias. Given an event e and a user u ∈ Se, time is the total elapsed
time of computing the PHTs of all other users in Se to u, and bias
is the sum of absolute PHT approximation errors. For compari-
son, we also implemented the Simulation algorithm (abbreviated
as SML) [13], which is essentially a sampling based algorithm for
computing decayed hitting time. SML can be slightly modified in
the following way to compute PHT: Given an event e and a user
u ∈ Se, to compute the PHTs of all other users in Se to u, we inde-
pendently run c random walk simulations from each v ∈ Se−{u}.
Each random walk stops when u is hit or a maximum number of
steps s is reached. Then, we derive the average path weight of the
c simulations as v’s PHT.

Convergence of GI and DNE. We first check the convergence of
the GI and DNE algorithms. GI has one parameter (the number of
iterations k) and DNE has two parameters (the size of neighbor-
hood m and the number of local iterations k). For GI, we investi-
gate its convergence w.r.t k. For DNE, we find that the bias does
not vary much when the number of iterations is larger than 5. Thus,
we set k = 5 and investigate its convergence w.r.t m.

We randomly choose a popular event e (|Se| > 1000) from the
Gowalla data set along with an arbitrary user u ∈ Se, and then
compute the PHTs of other users in Se to u. Such a process is
repeated 100 times and the average results are reported. As shown
in Figure 5, both algorithms converge rapidly when the respective
parameters k and m increase. Moreover, the bias of DNE is only
slightly larger than GI, even when the cardinality of neighborhood
is as small as 1000. It suggests that DNE empirically provides a
good estimation of PHT.

 0

 3

 6

 9

 12

 400 800 1200 1600 2000

T
im

e/
s

Event User Number

GI
DNE
SML

(a) Time cost vs. |Se|

 0

 0.02

 0.04

 0.06

 0.08

 400 800 1200 1600 2000

B
ia

s

Event User Number

GI
DNE
SML

(b) Bias vs. |Se|
Figure 6: Performance vs. |Se| (τ = 0.5).

Performance vs. Event Size. In this set of experiments, we com-
pare the performance of the GI, DNE, and SML algorithms for
events of different sizes. We set k = 10 for GI; and m = 1000, k =
5 for DNE. Such parameter settings are adequate to ensure GI and
DNE provide good estimations of PHTs (Figure 5). For SML, larg-
er c and s values lead to tighter estimations of PHTs, and smaller
c and s values contribute to better efficiency. We set c = 1000
and s = 20, as we find that this setting makes SML reach a good
balance between estimation tightness and running time.

Figure 6 reports the results when event size varies from 400 to
2000. As shown, the running time of SML grows linearly while that
of GI and DNE stays constant, yet SML still causes much larger
bias than GI and DNE. This is expected. Although appealing for its
simplicity, SML suffers from two shortcomings: (1) SML needs to
perform c random walk simulations for each user v ∈ Se − {u},
indicating that the time cost will grow rapidly as |Se| increases. In
contrast, GI and DNE both compute the PHTs of all users at one
time and thus are |Se|-independent. (2) SML is a non-deterministic
approximate algorithm and its bias may fluctuate randomly. GI
and DNE, on the contrary, are deterministic algorithms with tight
theoretical error bounds.

Comparing the performance of GI and DNE, we can see DNE is
much more efficient than GI, but it has larger bias than GI. This is
because DNE excludes vertices that are too faraway from the target
vertex, and thus sacrifices a little precision for speed. Fortunately,
since the PHT of each excluded vertex is always small (Lemma 2),
the total bias of DNE is still acceptable even when the event size is
quite large (0.023@2000).

6.2.2 Influential Events Discovery
We proceed to evaluate the influence scores for different events

in the Gowalla data set. Since DNE is much faster than GI and also
provides quite tight estimations for PHTs, we employ the DNE al-
gorithm to compute PHT, with the parameters m = 1000, k = 10.
Using the ridge regression technique as described in Section 4.2,
we obtain the parameters of the power law distribution for comput-
ing geographical influence: α = 6.0, β = −1.25.

Again, given an event e, we denote by M-score the maximum
user influence of the users in Se, and by A-score the average user
influence of the users in Se.

Event Scores of Different Categories. The 2973453 Gowalla
events distribute in 416 different categories. In this set of exper-
iments, we look into how the M-score and A-score vary across d-
ifferent categories. For this purpose, we choose 10 representative
categories and compute the M-score and A-score for every event
in each category, with the attenuation parameter τ = 0.8. Table 3
presents the largest M-score and A-score in each category.

Table 3: Largest M-scores and A-scores for 10 representative
categories in Gowalla (τ = 0.8).

Category Name M-Score A-Score
library 21.782 2.783

bar 12.374 2.344
theater 14.590 2.038
resort 11.015 1.776

historic landmark 10.258 1.645
apple store 15.376 1.521
asian food 8.621 1.225

apparel 7.370 0.742
airport terminal 2.512 0.181

hotel 1.738 0.093

We can see, the M-score and A-score are high for the categories
library, bar, and theater. This indicates that the visitors of a typi-
cal POI in these categories are close to each other both geograph-
ically and socially. For example, the POI reaching the largest M-
score 21.782 in the category library is the M.D. Anderson Library
in the University of Houston, which has 97 visitors. Our manual
investigation suggests that these visitors are mostly students from
the University of Houston, each one having many social links with
the others. Not difficult to imagine, if the M.D. Anderson Library
launches a new service and employs one of the 97 student to post
this message on-line, the information can quickly reach the other
students and may drive them to experience it. Likewise, the high
scores of the categories bar and theater imply the users form social
communities for some hobby (drinking or watching drama), and
meanwhile live congregationally.

In contrast, the M-score and A-score are low for the categories
hotel and airport terminal. This is because the social relations a-
mong hotel and airport visitors are usually weak, resulting in low
social correlations. Moreover, people visiting a hotel mostly do not
live in the city where the hotel locates, and it is the same for people
visiting an airport.

For the rest five categories, the M-score and A-score of the cat-
egories apparel and food are lower than the apple store category.
This means people are more likely to follow their friends’ prefer-
ences when they are purchasing a digital product than purchasing
clothes or food. The scores of the categories resort and historic
landmark are quite high. Interestingly, we find the events reaching
largest M-scores are usually hot places with thousands of visitors,
whereas the events reaching largest A-scores are some local places
with only a few visitors that are highly correlated. Take the cate-
gory resort as an example, the event corresponding to the largest
M-score 10.258 is the Disney’s Grand Floridian Resort, which has
739 visitors from both Florida and other states. In contrast, the
event with the largest A-score is the Bauwagen Estenfeld, which is
a local resorting club located in Germany, having only 11 visitors
living in Estenfeld.

Top-K Events in Each Category. In this set of experiments, we
zoom in to retrieve top-K influential events in one category. In the
following, we report the results for the categories apparel and asian
food.

Table 4 and 5 are the top-five influential events in category ap-
parel with the largest M-scores and A-scores, respectively. From

Table 4, we find that the events with large M-scores are usually fa-
mous brands (e.g., Zara) having a significant number of consumer-
s. One can also observe that hot brands with large M-scores do
not necessarily have large A-scores. It is because there exist many
consumers who have weak connections with the other consumers
of those hot brands, the low influences of such consumers drasti-
cally pull down the A-scores. In contrast, the events with large A-
scores are mostly some brands not so famous, but possessing a set
of consumers that are highly correlated. Take Bergner’s as a con-
crete example, it is a department store offering mid-line to higher
end merchandise. The 15 customers of Bergner’s all live in central
Illinois, and there are as many as 68 social links among them.

Another interesting finding is that, the retrieved events are most-
ly stores selling women’s apparel. This implies that females are
more likely to discuss with their friends and follow their choices,
leading to the formation of fan communities for some brands. In
comparison, the purchasing behaviors of males do not exhibit so
much aggregation.

Table 4: Top-5 events with the largest M-scores in category “ap-
parel”.

Event M-Score A-Score |Se|
ZARA Central World 7.37 0.227 107

Bloomingdale’s 7.11 0.054 198
Louis Vuitton 6.72 0.190 61

JCPenney 6.38 0.181 227
Jack Jones 6.37 0.067 524

Table 5: Top-5 events with the largest A-scores in category “ap-
parel”.

Event A-Score M-Score |Se|
Bergner’s 0.742 3.17 15

American Eagle Outfitting 0.717 2.51 14
Deja Vu Underground 0.708 2.37 12

Hot Topic Women’s Apparel 0.679 2.78 11
Sweet & Tender 0.654 2.02 13

Table 6 and 7 present the top-five events in category asian food,
along with the POI locations. Somewhat surprisingly, few of the
top POIs are located in Asia, especially for the POIs with large A-
scores. The reason may be that people visiting Asian restaurants
in America or Europe are usually Asian immigrants or Asian stu-
dents studying abroad. It is highly possible that they have strong
social relations with each other, forming fan communities for the
restaurants serving hometown food. Our manual investigation veri-
fies this phenomenon. Take the restaurant China Tiger as an exam-
ple. We find its consumers are mostly Chinese students studying in
Helsinki, they live quite close to each other and there are a signifi-
cant number of social links in the ensemble.

6.3 Scalability Study
To examine the scalability of the proposed algorithms, we exploit

the publicly available data set LiveJournal3, a free on-line commu-
nity whose members are highly active. The LiveJournal data set
has 4847571 users and 68993773 directed social links. We do not
have user locations or events for this data set, so we only use it to
check the scalability of the GI and DNE algorithms. Specifically,
we extract synthetic subgraphs with different graph sizes (in terms
of vertex number) from LiveJournal. Meanwhile, we randomly s-
elect 100 target users. Then we run the GI and DNE algorithms
on each subgraph to compute PHTs to those 100 users and report
the average running time. Figure 7 is the result. As shown, while

3http://snap.stanford.edu/data/soc-LiveJournal1.html

Table 6: Top-5 events with the largest M-scores in category
“asian food”.

Event M-Score |Se| Location
Shokudo 8.62 122 Honolulu, US

Pho Lien Hoa 8.44 94 Oklahoma, US
Bedok 85 Food Centre 8.41 148 Singapore

Kyoodai Restaurant 8.13 67 Phuket, Thailand
Goma Tei 7.87 95 Honolulu, US

Table 7: Top-5 events with the largest A-scores in category
“asian food”.

Event A-Score |Se| Location
Saigon Bay 1.225 11 Stockton, US
China Tiger 1.204 14 Helsinki, Finland
King Wah 1.178 17 Daly City, US

Ravintola Annapurna 1.155 12 Helsingfors, Finland
ABC Cafe Bakery 1.147 11 San Francisco, US

the running time of GI grows with graph size, that of DNE remain-
s constant. This is because DNE only iterates over vertices in the
neighborhood of a target vertex, and thus works more efficiently
than GI for large LBSNs.

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

4e+03 4e+04 4e+05 4e+06

T
im

e/
s

Number of vertices

GI
DNE

Figure 7: The scalability of GI and DNE.

7. CONCLUSION
This paper provided an in-depth study of geo-social influence

in location-based social networks. We proposed a unified metric
to quantify mutual user influence on event-level granularity. This
metric combined a novel social proximity measure named penal-
ized hitting time, with a geographical weight function modeled by
power law distribution. Based on this metric, we addressed the us-
er influence evaluation and influential events discovery problems.
Specifically, we proposed two approximation algorithms, namely
GI and DNE, to efficiently compute user influence; and we adopted
the sampling technique and the threshold algorithm to retrieve top-
K influential events. Our experimental results demonstrated that
the proposed algorithms are effective, efficient, and scalable.

There are some potential future directions of this work. In partic-
ular, besides the power-law distribution, it is promising to consider
other methods [9] for modeling the geographical mobility patterns
of users. Moreover, it is also interesting to explore the performance
of different combinations of geographic influence and social influ-
ence in addition to their product.

8. ACKNOWLEDGMENTS
This work was supported in part by the National Science Foun-

dation of China (Grant No. 60970124, 60903038, and 61170034).

9. REFERENCES
[1] http://goo.gl/Y39Gm.
[2] N. Agarwal, H. Liu, L. Tang, and P. S. Yu. Identifying the

influential bloggers in a community. In WSDM, pages
207–218, 2008.

[3] A. Anagnostopoulos, R. Kumar, and M. Mahdian. Influence
and correlation in social networks. In KDD, pages 7–15,
2008.

[4] E. Bakshy, J. M. Hofman, W. A. Mason, and D. J. Watts.
Everyone’s an influencer: quantifying influence on twitter. In
WSDM, pages 65–74, 2011.

[5] M. Brand. A random walks perspective on maximizing
satisfaction and profit. In SDM, 2005.

[6] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. Computer Networks,
30(1-7):107–117, 1998.

[7] M. Chen, J. Liu, and X. Tang. Clustering via random walk
hitting time on directed graphs. In AAAI, pages 616–621,
2008.

[8] E. Cho, S. A. Myers, and J. Leskovec. Friendship and
mobility: user movement in location-based social networks.
In KDD, pages 1082–1090, 2011.

[9] A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-law
distributions in empirical data. SIAM Review, 51(4):661–703,
2009.

[10] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. In PODS, 2001.

[11] T. L. Fond and J. Neville. Randomization tests for
distinguishing social influence and homophily effects. In
WWW, pages 601–610, 2010.

[12] M. C. González, C. A. H. R., and A.-L. Barabási.
Understanding individual human mobility patterns. CoRR,
abs/0806.1256, 2008.

[13] Z. Guan, J. Wu, Q. Zhang, A. Singh, and X. Yan. Assessing
and ranking structural correlations in graphs. In SIGMOD
Conference, pages 937–948, 2011.

[14] G. Jeh and J. Widom. Scaling personalized web search. In
WWW, pages 271–279, 2003.

[15] L. Katz. A new status index derived from sociometric
analysis. Psychometrika, 18(1):39–43, March 1953.

[16] J. M. Kleinberg. Authoritative sources in a hyperlinked
environment. J. ACM, 46(5):604–632, 1999.

[17] D. Liben-Nowell and J. M. Kleinberg. The link prediction
problem for social networks. In CIKM, pages 556–559, 2003.

[18] Q. Mei, D. Zhou, and K. W. Church. Query suggestion using
hitting time. In CIKM, pages 469–478, 2008.

[19] P. Sarkar and A. W. Moore. A tractable approach to finding
closest truncated-commute-time neighbors in large graphs. In
UAI, pages 335–343, 2007.

[20] P. Sarkar, A. W. Moore, and A. Prakash. Fast incremental
proximity search in large graphs. In ICML, pages 896–903,
2008.

[21] S. Scellato, A. Noulas, and C. Mascolo. Exploiting place
features in link prediction on location-based social networks.
In KDD, pages 1046–1054, 2011.

[22] P. Singla and M. Richardson. Yes, there is a correlation: -
from social networks to personal behavior on the web. In
WWW, pages 655–664, 2008.

[23] J. Tang, J. Sun, C. Wang, and Z. Yang. Social influence
analysis in large-scale networks. In KDD, pages 807–816,
2009.

[24] M. Ye, P. Yin, W.-C. Lee, and D. L. Lee. Exploiting
geographical influence for collaborative point-of-interest
recommendation. In SIGIR, pages 325–334, 2011.

