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ABSTRACT

Spatiotemporal activity modeling is an important task for applica-
tions like tour recommendation and place search. �e recently de-
veloped geographical topic models have demonstrated compelling
results in using geo-tagged social media (GTSM) for spatiotemporal
activity modeling. Nevertheless, they all operate in batch and can-
not dynamically accommodate the latest information in the GTSM
stream to reveal up-to-date spatiotemporal activities. We propose
ReAct, a method that processes continuous GTSM streams and
obtains recency-aware spatiotemporal activity models on the �y.
Distinguished from existing topic-based methods, ReAct embeds
all the regions, hours, and keywords into the same latent space to
capture their correlations. To generate high-quality embeddings, it
adopts a novel semi-supervised multimodal embedding paradigm
that leverages the activity category information to guide the em-
bedding process. Furthermore, as new records arrive continuously,
it employs strategies to e�ectively incorporate the new information
while preserving the knowledge encoded in previous embeddings.
Our experiments on the geo-tagged tweet streams in two major
cities have shown that ReAct signi�cantly outperforms existing
methods for location and activity retrieval tasks.
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1 INTRODUCTION

Today’s big cities pose big challenges when people try to �nd de-
sired resources like places and activities. Consider a tourist in a
metropolis like New York City. What are the popular activities in
her neighborhood at the time being? Which regions should she
stay if she cares much about quality food and accessible transporta-
tion around her hotel? With hundreds of thousands places in the
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city and the complex spatiotemporal dynamics, answering such
questions is challenging not only for tourists, but even for local
citizens who have lived in New York City for many years.

Years ago, developing data-driven approaches to model people’s
activities in the physical world was almost impossible due to the lack
of reliable sources. Traditional approaches have resorted to human
surveys to unveil land uses [31, 32], yet such knowledge is still
too limited to support downstream activity retrieval applications.
�e recent proliferation of geo-tagged social media (abbreviated as
GTSM onwards), however, sheds light on this problem. As every
GTSM record (e.g., geo-tagged tweet, Foursquare checkin) contains
a location, a timestamp, and a text message, the massive GTSM data
generated from various platforms serve as a result of crowd sensing
— they contain rich information about spatiotemporal dynamics
as people probe di�erent regions as human sensors. With tens of
millions of GTSM records being collected every day, it becomes
possible to perform data-driven spatiotemporal activity modeling
to address people’s information needs.

�e recent studies [13, 16, 24, 28, 34, 35] have demonstrated
the potential of GTSM for modeling spatiotemporal activities. By
incorporating the spatial information into classical topic models
like LDA [5], their proposed geographical topic models can detect
the activities in di�erent regions, and vice versa. While compelling
results have been obtained by those geographical topic models, they
all assume the GTSM data is given as static. In practice, however,
people’s activities in the physical world are dynamically evolving
in nature, and the end users o�en demand the latest knowledge.
For example, consider the user who queries for popular activities
around her. What she needs are the activities popular in recent
months or even weeks, rather than the ones that were popular years
ago but no longer popular now. As another example, when users
seek for places for outdoor activities in summer time, beach-area
a�ractions could be good answers to such queries. But when it
comes to the fall time, beach-related activities become too chilly
for most people, while other places like parks with hiking trails
are more appropriate. Such information is readily available in
GTSM streams. Unfortunately, existing geographical topic models
all operate in batch and cannot capture the latest information about
spatiotemporal activities.

In this paper, we learn recency-aware spatiotemporal activity
models from dynamic GTSM streams. �is task is challenging on
account of the following issues. First, integrating diverse data types
is nontrivial. GTSM involves three di�erent data types: location,
time, and text. Considering the totally di�erent representations



of these data types and their complicated inter-type interactions,
e�ectively fusing them into a uni�ed model is a challenge. Second,
it is hard to capture activity semantics from short text. In GTSM, the
semantics of people’s activities are expressed through short text
messages instead of long documents. To build high-quality spa-
tiotemporal activity models, it is important yet di�cult to capture
the semantics of such short text messages. �ird, recency-aware
processing of massive streaming data is required. We have to handle
the online GTSM stream to build recency-aware spatiotemporal
activity models. Nevertheless, it is challenging to e�ectively accom-
modate the new records without over��ing them. In addition, it is
key to build an update-e�cient model to process massive GTSM
streams.

We propose a recency-aware spatiotemporal activity model named
ReAct. �e main technical contributions of ReAct are highlighted
as follows:

(1) In ReAct, we directly embed all the regions, hours, and
keywords into the same latent space to preserve their inter-
type interactions. If two elements are highly correlated
(e.g., the JFK airport region and the keyword ‘�ight’), their
representations in the latent space tend be close. Com-
pared with geographical topic modeling methods, the mul-
timodal embedding does not impose any distributional
assumptions on people’s activities, and incurs much lower
computational cost in the learning process.

(2) We employ a novel semi-supervised paradigm in ReAct
to generate high-quality embeddings. In a considerable
number of records, the users explicitly specify the point-
of-interest (POI) to indicate their activity categories (e.g.,
outdoor, shop). �e category information can serve as
clean and well-structured knowledge, which allows us to
be�er separate the elements with di�erent semantics in
the latent space. Hence, we adopt a semi-supervised par-
adigm that leverages the clean category information to
guide the embedding process and generates be�er-quality
embeddings.

(3) As new GTSM records arrive continuously, we design two
strategies to update the embeddings and obtain recency-
aware spatiotemporal activity models. �e �rst imposes
life-decaying weights on the records such that recent records
are emphasized. �e second treats previous embeddings
as prior knowledge, and employs a constrained optimiza-
tion procedure to obtain updated embeddings. With either
strategy, ReAct e�ectively incorporates the information in
the new records, while largely preserving the knowledge
encoded in the previous embeddings to avoid over��ing.

To the best of our knowledge, ReAct represents the �rst work
that can learn recency-aware spatiotemporal activity models from
dynamic GTSM streams on the �y. We have performed extensive
experiments on two million-scale geo-tagged tweet data sets col-
lected from Los Angeles and New York City. We �nd that ReAct
can generate spatiotemporal activity models in which the latest
pa�erns of spatiotemporal activities are well captured. Across a va-
riety of activity retrieval tasks, ReAct outperforms state-of-the-art
methods signi�cantly.

2 OVERVIEW

Problem Description. Let R = {r1, r2, . . . , rN , . . .} be a stream
of geo-tagged social media (GTSM) records. Each record r ∈ R is
de�ned by a tuple 〈tr , lr ,mr 〉 where: (1) lr is a two-dimensional
vector that represents the user’s location when r is created; (2) tr
is the creating timestamp; and (3) mr is a bag of keywords that
represent the text message of r .

Our goal is to use the stream R to learn recency-aware spatiotem-
poral activity models. As there are three di�erent a�ributes (i.e.,
location, time, and text) that are intertwined, an e�ective spatiotem-
poral activity model should carefully capture their inter-type corre-
lations. Further, to continuously incorporate the latest information
in R, the model should keep updating as new records arrive. At
any time, the learnt model should be able to answer two types of
queries: 1) Spatial query. Given a spatial location, what are the
popular activities around it? and 2) Textual query. Given an activity
query represented by a bunch of keywords, what are the suitable
regions or places for such an activity? For both queries, the users
can also specify a timestamp in their query. As such, the model
can return time-speci�c results in response, e.g., returning brunch
places for the query ‘food’ issued in the morning and dining places
for the same query issued in the a�ernoon.
Overview of ReAct. To model people’s spatiotemporal activities,
ReAct embeds all the spatial, temporal, and textual elements into
the same latent space. While the keywords can serve as natural
embedding elements for the textual part, it is infeasible to embed
every location and timestamp as the space and time are contin-
uous. We thus map each timestamp to some hour in a day and
use the mapped hour as a basic temporal element, and hence have
24 possible temporal elements in total. Similarly, we partition the
geographical space into equal-size regions and consider each region
as a basic spatial element.

Meanwhile, we observe that a considerable number of records ex-
plicitly specify the points-of-interests (POIs), e.g., many Foursquare
users link their accounts with Twi�er to checkin at di�erent venues.
�e category information (e.g., outdoor, shop) of those records,
which is clean and well-structured, can serve as useful signals to
understand people’s activities. We thus regard those categories as
labels, and design a semi-supervised paradigm to guide the learning
of quality embeddings. At a high level, ReAct aims to learn the
embeddings L, T , W , and C where: (1) L is the embeddings for
regions; (2)T is the embeddings for hours; (3)W is the embeddings
for keywords; and (4) C is the embeddings for categories. Take L
as an example. Each element vl ∈ L is a D-dimensional (D > 0)
vector, which represents the embedding for region l .

Figure 1 shows the framework of ReAct. As shown, it adopts
a semi-supervised paradigm for multimodal embedding. 1) For an
unlabeled record ru , we optimize the embeddings L, T ,W for the
task of recovering the a�ributes in ru ; and 2) For a labeled record
rl , we optimize the embeddings L, T ,W , C for not only a�ribute
recovery but also activity classi�cation. In such a process, the
embeddings of the regions, hours, and keywords are shared across
the two tasks, while the category embeddings are speci�c to the
activity classi�cation task. In this way, the semantics of activity
categories are propagated from labeled records to unlabeled ones,



thereby be�er separating the elements with di�erent semantics in
the latent space.

Regions Hours Keywords Categories

Unlabeled 
Records

Labeled 
Records

Attribute Recovery Activity Classification

Embeddings

Figure 1: �e semi-supervised multimodal embedding

framework of ReAct.

�e entire learning proceeds in an online manner. When a col-
lection R∆ of new records arrive, our goal is to update the embed-
dings (L,T ,W ,C) to accommodate the information contained in R∆.
While it is tempting to useR∆ to learn the embeddings from scratch,
such an idea not only incurs unnecessary computational overhead,
but also leads to over��ing of the new data. To address this issue,
we propose an online learning procedure in Section 3, which e�ec-
tively incorporates the new records while largely preserving the
information encoded in the previous embeddings.

3 LEARNING THE REACT MODEL

In this section, we describe the learning procedures for ReAct. As
aforementioned, given a collection of records R∆, for any record
r ∈ R∆, either labeled or unlabeled, ReAct �rst takes the a�ribute
recovery task, and updates the embeddings L,T , andW to correctly
recover the a�ributes of r . If r is labeled, ReAct further leverages
the category information as supervision, and updates L, T ,W , and
C such that r can be classi�ed into the correct category.

�e key problem in the above online learning framework is, how
to update the embeddings with the goal of e�ectively incorporating
the information in R∆ without over��ing it? We develop two
di�erent strategies for this problem: one is life-decaying learning,
and the other is constraint-based learning. In what follows, we �rst
describe the details of those two strategies in Section 3.1 and 3.2.
�en we analyze their space and time complexities in Section 3.3.

3.1 Life-Decaying Learning

Our �rst strategy, called life-decaying learning, assigns di�erent
weights to the records in the GTSM stream such that more recent
records receive higher weights. Speci�cally, for any record r that
has appeared in the stream, we set its weight as:

wr = e−τ ar ,

where τ > 0 is a decaying parameter, and ar is r ’s age with regard
to the current time. �e general philosophy of such a weighing
scheme is to emphasize the recent records and highlight the up-
to-date observations of urban activities. On the other hand, the
old records in the stream are not completely ignored, they have
smaller weights but are still involved in model training to prevent
over��ing.

Practically, it is infeasible to store all the records seen so far on
account of the massive size of the GTSM stream. For tackling this

issue, we maintain a continuously updating bu�er B, as shown
in Figure 2. �e bu�er B consists of m buckets B0,B1, . . . ,Bm−1,
where all the buckets have the same time span ∆T . For each bucket
Bi (0 ≤ i < m), we assign an exponentially decaying weight e−τ i
to it, where the weight represents the percentage of samples that
we preserve for the respective time span. In other words, the most
recent bucket B0 holds the complete set of records within its time
span, the next bucket B1 holds e−τ of the corresponding records,
and so on. When a new collection of records R∆ arrive, the bu�er
B is updated to accommodate R∆. �e new records R∆ are fully
stored in the most recent bucket B0. For each other bucket Bi (i > 0),
the records in its predecessor Bi−1 are downsampled with rate e−τ
and then moved into Bi .

old buffer

new buffer

……

�T

……

R�

B0B1B2B3B4

Figure 2: Maintaining a bu�er B for life-decaying learning.

For any bucketBi , e
−τ i

of the records falling inBi ’s time span

are preserved formodel updating. When new records arrive,

B is updated based on downsampling and shi�ing.

Algorithm 1 sketches the learning procedure of ReAct with
the life-decaying strategy. As shown, when a collection R∆ of
new records arrive, we �rst shi� the records from Bi−1 to Bi by
downsampling (lines 1-2), and store R∆ into B0 in full (lines 3).
Once the bu�er B is updated, we randomly sample records from
B (line 4-7) to update the embeddings. First, for any record r , we
consider the a�ribute recovery task and update the embeddings L,
T , andW such that the a�ributes of r can be correctly recovered.
Second, if r is labeled, we further update L,T ,W , andC such that r
can be classi�ed into the correct activity category. Such a process
is repeated over R∪ for a number of epochs before the updated
embeddings of L, T , W , and C are output. In the following, we
detail the updating rules for a�ribute recovery (line 8) and activity
classi�cation (line 9), respectively.

3.1.1 The A�ribute Recovery Task. For a�ribute recovery, we
optimize the embeddings L, T , W such that each a�ribute of a
record r can be maximally recovered, assuming the other a�ributes
of r are already observed. Given a record r , for any a�ribute i ∈ r
with type X (region, hour, or keyword), we model the likelihood of
observing i as

p (i |r−i ) = exp(s (i, r−i ))/
∑
j ∈X

exp(s (j, r−i )),

where r−i is the set of all the a�ributes in r except i , and s (i, r−i ) is
the similarity score between i and r−i .

In the above, the key is how to de�ne s (i, r−i ). A natural idea
is to average the embeddings of the a�ributes in r−i , and compute
s (i, r−i ) as s (i, r−i ) = vT

i
∑
j ∈r−i vj/|r−i |, where vi is the embed-

ding for a�ribute i . Nevertheless, such a simple de�nition fails to
consider the continuities of the space and time. Take the spatial
continuity as an example. Because of spatial locality, two regions



Algorithm 1: Life-decaying learning of ReAct.
Input: �e previous embeddings L, T ,W , and C .

A bu�er ofm buckets B = {B0,B1, . . . ,Bm−1}.
A collection R∆ of new records.

Output: �e updated bu�er B and embeddings L,T ,W , andC .
// Downsampling with rate e−τ .

1 for i from 1 to n do

2 Bi ← e−τ -downsampled records from Bi−1;
3 B0 ← R∆ ;
4 R∪ ← Bm−1 ∪ Bm−2 . . . ∪ B0;
5 for epoch from 1 to N do

6 for i from 1 to |R∆ | do
7 r ← Randomly sample a record from R∪;

// for labeled and unlabeled records

8 Update L, T , andW for recovering r ’s a�ributes;
// for only labeled records

9 if r is labeled then

10 Update L, T ,W , and C for classifying r ’s activity;

11 Return B, L, T ,W , and C;

that are close to each other should be considered correlated instead
of independent. We thus introduce spatial smoothing and temporal
smoothing to capture the spatiotemporal continuities. With the
smoothing technique, ReAct not only maintains local consistency
of neighboring regions and hours, but also alleviates data sparsity.

Figure 3 illustrates the spatial and temporal smoothing processes.
As shown, for each region l , we introduce a pseudo region l̂ . �e
embedding of l̂ is the weighted average of the embeddings of l and
l ’s neighboring regions, namely

vl̂ = (vl + α
∑

ln ∈Nl

vln )/(1 + α |Nl |),

where Nl is the set of l ’s neighboring regions, and α is a constant
for spatial smoothing. Similarly, for each hour t , we introduce a
pseudo hour t̂ , whose embedding is the weighted average of the
embeddings of t and t ’s neighboring hours:

vt̂ = (vt + β
∑

tn ∈Nt

vtn )/(1 + β |Nt |),

where Nt is the set of t ’s neighboring hours, and β is a temporal
smoothing constant. In practice, we �nd that se�ing α = 0.1 and
β = 0.1 usually leads to satisfactory performance of the model.

t

center hour t

neighbor hour tn

center region l

neighbor region ln

l

pseudo region vector pseudo hour vector

vl̂ =

vl + ↵
P

ln2Nl

vln

1 + ↵|Nl|

Spatial Smoothing Temporal Smoothing

vt̂ =

vt + �
P

tn2Nt

vtn

1 + �|Nt|

Figure 3: Spatial and temporal smoothing. For each region

(hour), we combine it with its neighboring regions (hours)

to generate a pseudo region (hour).

In addition to the above pseudo region and hour embeddings,
we also introduce pseudo keyword embeddings for notational ease.
Given r−i , its pseudo keyword embedding is de�ned as:

vŵ =
∑

w ∈Nw

vw /|Nw |,

where Nw is the set of keywords in r−i . With these pseudo embed-
dings, we de�ne a smoothed version of s (i, r−i ) as s (i, r−i ) = vT

i hi ,
where

hi =



(vl̂ + vt̂ + vŵ )/3, if i is a keyword,
(vt̂ + vŵ )/2, if i is a region,
(vl̂ + vŵ )/2, if i is an hour.

Finally, the loss function for the a�ribute recovery task is simply
the negative log-likelihood of observing all the a�ributes of the
records in R∪:

JR∪ = −
∑
r ∈R∪

∑
i ∈r

logp (i |r−i ). (1)

To e�ciently optimize the above objective, we use stochastic
gradient descent (SGD) and negative sampling [22]. At each time,
we use SGD to sample a record r and an a�ribute i ∈ r . With
negative sampling, we randomly select K negative a�ributes that
have the same type with i but do not appear in r , then the loss
function for the selected samples becomes:

Jr = − logσ (s (i, r−i )) −
K∑
k=1

logσ (−s (k, r−i )),

where σ (·) is the sigmoid function. �e updating rules for vi , vk
and hi can be obtained by taking the derivatives of Jr :

∂Jr
∂vi
= (σ (s (i, r−i )) − 1)hi ,

∂Jr
∂vk

= σ (s (i, r−i ))hi ,

∂Jr
∂hi
= (σ (s (i, r−i )) − 1)vi +

K∑
k=1

σ (s (k, r−i ))vk .

For any a�ribute j in hi , we have ∂L/∂vj = ∂L/∂hi · ∂hi/∂vj ,
as hi is linear in j, the term ∂hi/∂vj is convenient to calculate.

3.1.2 The Activity Classification Task. �e objective of the ac-
tivity classi�cation task is to learn the embeddings such that the
activity categories of those labeled records in R∪ can be correctly
predicted. Let r be a labeled record with category c . �e basic intu-
ition is to make c’s embedding close to the constituent a�ributes in
r . Based on this intuition, we model the probability of classifying r
into category c as:

p (c |r ) = exp(s (c, r ))/
∑
c ′∈C

exp(s (c ′, r )).

For the similarity score s (c, r ), we de�ne it in a smoothed way
similar to the a�ribute recovery task. �at is, s (c, r ) = vT

c hr , where
hr = (vl̂ + vt̂ + vŵ )/3.

�e objective function of the activity classi�cation task is then
the negative log-likelihood of predicting the activities categories



Algorithm 2: Constraint-based learning of ReAct.
Input: �e previous embeddings L, T ,W , and C .

A collection R∆ of new records.
Output: �e updated embeddings L, T ,W , and C .

1 for epoch from 1 to N do

2 Randomly shu�e the records in R∆;
3 foreach r ∈ R∆ do

4 Update L, T , andW for constrained a�ribute recovery;
5 if r is labeled then

6 Update L, T ,W , and C for constrained activity
classi�cation;

7 Return L, T ,W , and C;

for the new records in R∪:

JR∪ = −
∑
r ∈R∪

logp (c |r ). (2)

We again use SGD and negative sampling to optimize the objective
e�ciently. In speci�c, given the labeled record r with the positive
category c , we randomly pick a negative category c ′ satisfying
c ′ , c . �en the loss function for r in the activity classi�cation task
becomes:

Jr = − logσ (s (c, r )) − logσ (−s (c ′, r )).
Similar to the derivation in the a�ribute recovery task, the up-

dating rules of the a�ributes and categories can be easily obtained
by taking the derivatives of Jr and then applying SGD.

3.2 Constraint-Based Learning

�e life-decaying strategy relies on the bu�er B to keep old records
besides R∆, thereby incorporating the information in R∆ with-
out over��ing. However, maintaining B could incur additional
space and time overhead. To avoid such overhead, we propose our
second strategy named constraint-based learning. �e key is to
to accommodate the new records R∆ by �ne-tuning the previous
embeddings. During the �ne-turning process, we impose the con-
straint that the updated embeddings do not deviate much from the
previous ones. In this way, ReAct generates embeddings that are
optimized for R∆ while respecting the prior knowledge encoded in
previous embeddings. Algorithm 2 sketches the constraint-based
learning procedure of ReAct. As shown, when a collection R∆
of new records arrive, we directly use them to update the embed-
dings for a number of epochs, where the updating for both a�ribute
recovery and activity classi�cation is performed under constraints.

Let us �rst examine the constraint-based a�ribute recovery task.
Given the new records R∆ and their a�ributes, our goal is still to
recover the a�ributes of R∆, but now we add a regularization term
in the objective to ensure the result embeddings can retain the
previous embeddings. In formal, we design the objective function
for a�ribute recovery as:

JR∆
= −

∑
r ∈R∆

∑
i ∈r

logp (i |r−i ) + λ
∑

i ∈L,T ,W ,C
‖vi − v′i ‖

2,

where vi is the updated embedding of a�ribute i , and v′i is i’s
previous embedding learnt before the arrival of R∆. In the above

objective function, it is important to note the regularization term∑
i ∈L,T ,W ,C ‖vi − v′i ‖

2. It prevents the updated embeddings from
deviating drastically from the previous embeddings. �e value of
λ (λ ≥ 0) plays an important role in controlling the regularization
strength. When λ = 0, the embeddings are purely optimized for
��ing R∆; when λ = ∞, the learning process completely ignore
the new records and all the embeddings remain unchanged.

We still combine SGD and negative sampling to optimize the
above objective function. Consider a record r and an a�ribute i ∈ r .
With negative sampling, we randomly select a set of K negative
a�ributes N−i , then the objective for the selected samples is:

Jr = − logσ (s (i, r−i ))−
∑

k ∈N −i

logσ (−s (k, r−i ))+λ
∑

i ∈{r }∪N −i

‖vi−v′i ‖
2.

�e updating rules for di�erent a�ributes can be easily obtained
by taking the derivatives of Jr . Taking a�ribute i as an example,
the corresponding derivative and updating rule are given by

∂Jr
∂vi
= (σ (s (i, r−i )) − 1)hi + 2λ(vi − v′i ),

vi ← vi + η(1 − σ (s (i, r−i )))hi − 2ηλ(vi − v′i ),

where η is the learning rate for SGD.
By examining the updating rule for i , we can see the constraint-

based strategy enjoys two a�ractive properties: 1) It tries to make
i’s embedding close to the average embedding (i.e., hi ) of the other
a�ributes in r . Especially when the current embeddings do not
produce high similarity score between i and ri , i.e., s (i, r−i ) is small,
the updating takes an aggressive step to push vi close to hi ; and 2)
With the term −2ηλ(vi −v′i ), the learnt embeddings are constrained
to preserve the information encoded in the previous embeddings.
In speci�c, if the learnt embedding vi deviates from the previous
embedding v′i too much, the updating rule would subtract the
di�erence to some extent and drag vi towards v′i .

We proceed to examine the activity classi�cation task under
the constraint-based strategy. �e overall objective is to maximize
the log-likelihood of predicting the activities categories for R∆
while minimizing the deviation from the previous embeddings.
Using SGD, for any record r with activity category c , we generate
a negative category c ′, and then de�ne the objective as

Jr = − logσ (s (c, r )) − logσ (−s (c ′, r )) + λ
∑

c ∈{c,c ′ }

‖vc − v′c ‖
2.

Again, the updating rules for the di�erent variables in the above
objective can be easily obtained by taking the derivatives of Jr , we
omit the details here to save space.

3.3 Complexity Analysis

Space complexity. With either life-decaying learning or constraint-
based learning, we need to maintain the embeddings of all the re-
gions, hours, keywords, and categories. Let D be the dimension
of the latent space. �en the space cost for maintaining those em-
beddings is O (D ( |L| + |T | + |W | + |C |)), where |L|, |T |, |W |, and
|C | are the numbers of regions, hours, keywords, and categories,
respectively. In addition, both strategies need to keep a collection of
training records. For the constraint-based learning, the space cost
of this part is O ( |Rmax |) where |Rmax | is the maximum number
of new records that arrive at one time. �e life-decaying learning



strategy needs to keep the new records as well as some old ones. As
it imposes exponentially decaying sampling rates on the buckets,
the space cost for maintaining those records is

O ( |Rmax |(1 + e−τ + . . . + e−(m−1)τ )) = O ( |Rmax |
1 − e−mτ

1 − e−τ ).

Time complexity. We �rst analyze the time complexity of the
constraint-based learning strategy. Examining Algorithm 2, one
can see that the constraint-based strategy needs to go over R∆ for
N epochs and process every record in R∆ exactly once in each
epoch. Hence, the time complexity is O (NDM2 |Rmax |), where M
is the maximum number of a�ributes in any record. Since N and
D are �xed beforehand, and M is usually su�ciently small, ReAct
scales roughly linearly with R∆. Similarly, the time complexity of
the life-decaying strategy is derived as O (NDM2 |Rmax | + |R∪ |),
where |R∪ | = |Rmax |(1 − e−mτ )/(1 − e−τ ).

4 EXPERIMENTS

4.1 Experimental Setup

4.1.1 Data Sets. Our experiments are based on two real-life geo-
tagged tweet data sets: LA and NY. �e LA data set contains ∼1.10
million geo-tagged tweets published in Los Angeles. We crawled
the LA data set by monitoring the Twi�er Streaming API1 during
2014.08.01 – 2014.11.30 and continuously gathering the geo-tagged
tweets in the bounding box of LA. In addition, we crawled all the
POIs in LA through Foursquare’s public API2. We are able to link
∼0.11 million of the crawled tweets to the POI database and assign
them to one of the following categories: Food, Shop & Service,
Travel & Transport, College & University, Nightlife Spot, Residence,
Outdoors & Recreation, Arts & Entertainment, Professional & Other
Places. We preprocessed the raw data as follows. For the text part,
we removed user mentions, URLs, stopwords, and the words that
appear less than 100 times in the corpus. For the space and time, we
partitioned the LA area into small grids with size 300m*300m, and
broke the one-day period into 24 one-hour windows. �e NY data
set is also collected from Twi�er and then linked with Foursquare.
It consists of ∼1.20 million geo-tagged tweets in New York City
during 2014.08.01 - 2014.11.30, and we are able to link ∼0.10 million
of them with Foursquare POIs. �e preprocessing steps are the
same as LA.

4.1.2 Baselines. We compare our proposed ReAct model with
the following baseline methods:

• LGTA [34] is a geographical topic model that assumes
a number of latent spatial regions — each described by
a Gaussian. Meanwhile, each region has a multinomial
distribution over the latent topics that generate keywords.

• MGTM [16] is a state-of-the-art geographical topic model
based on the multi-Dirichlet process. It is capable of �nding
geographical topics with non-Gaussian distributions, and
does not require a pre-speci�ed number of topics.

• Tensor [9] builds a 4-D tensor to encode the co-occurrences
among location, time, text, and category. It then factorizes
the tensor to obtain low-dimensional representations of all
the elements.

1h�ps://dev.twi�er.com/streaming/overview
2h�ps://developer.foursquare.com/

• SVD �rst constructs the co-occurrence matrices between
each pair of location, time, text, and category, and then
performs Singular Value Decomposition on the matrices.

• TF-IDF constructs the co-occurrence matrices between
each pair of location, time, text, and category. It then
computes the tf-idf weight for each entry in the matrix by
treating rows as documents and columns as words.

Similar to our ReAct method, Tensor, SVD, and TF-IDF also rely
on space and time partitioning to obtain regions and time periods.
We use the same partitioning granularity for those methods to
ensure fair comparison. For the two di�erent learning strategies
of ReAct, we refer to the life-decaying one as RA-Decay, and the
constraint-based one as RA-Cons. Besides them, we also implement
two weakened variants of ReAct to validate the e�ectiveness of
recency-ware learning and the semi-supervised paradigm: 1) RA-
Base is a variant of ReAct that neither adopts recency-aware
training, nor leverages the category information as supervision; and
2) RA-Semi is another variant, which uses the category information
as supervision, but does not perform recency-aware training. Note
that both RA-Base and RA-Semi perform training in batch instead
of online, treating all the seen instances equally.

4.1.3 Parameter Se�ings. �ere are �ve common parameters
for the life-decaying and constraint-based strategies: 1) the latent
embedding dimension D; 2) the number of epochs N ; 3) the SGD
learning rate η; 4) the spatial smoothing constant α ; and 5) the
temporal smoothing constant β . By default, we setD = 300, N = 50,
η = 0.01, and α = β = 0.1. Meanwhile, the life-decaying strategy
has its speci�c parameters, the decaying rate τ and the number
of buckets m; and the constraint-based strategy also has its own
parameter, the regularization strength λ. We set their default values
to τ = 0.01,m = 500, and λ = 0.3.

In LGTA, there are two major parameters, the number of regions
R, and the number of latent topics Z . A�er careful tuning, we set
R = 300 and Z = 10. MGTM is a non-parametric method that
involves several hyper-parameters. We set the hyper-parameters
following the original paper [16]. For Tensor and SVD, we set the
latent dimension as D = 300 to compare with ReAct fairly.

4.1.4 Evaluation Tasks and Metrics. We use two types of activity
retrieval tasks to evaluate the e�ectiveness of di�erent models. �e
�rst is to retrieve locations for a given activity. Speci�cally, recall that
each GTSM record re�ects a user’s activity with three a�ributes: a
location lr , a timestamp tr , and a bag of keywordsmr . In the loca-
tion retrieval task, the input is the timestamp tr and the keywords
mr , and the goal is to accurately pinpoint the ground-truth location
from a pool of candidates. We retrieve the location at two di�erent
granularities: 1) coarse-grained region retrieval is to retrieve the
ground-truth region that r falls in; and 2) �ne-grained POI retrieval
is to retrieve the ground-truth POI that r corresponds to. Note
that �ne-grained POI retrieval is only evaluated on the tweets that
have been linked with Foursquare. �e second task is to retrieve
activities for a given location. In this task, the input is the timestamp
tr and the location lr , and the goal is to pinpoint the ground-truth
activities at two di�erent granularities: 1) coarse-grained category
retrieval is to retrieve the ground-truth activity category of r . Again,
such a coarse-grained activity retrieval is performed only on the



tweets that have been linked with Foursquare; and 2) �ne-grained
keyword retrieval is to retrieve the ground-truth messagemr from
a candidate pool of messages.

To summarize, we study four sub-tasks in total: 1) region re-
trieval; 2) POI retrieval; 3) category retrieval; and 4) keyword re-
trieval. For each retrieval task, we generate a candidate pool by
mixing the ground truth with a set of M negative samples. Take
region retrieval as an example. Given the ground-truth region lr ,
we mix lr with M randomly chosen regions. �en we try to pin-
point the ground truth from the size-(M + 1) candidate pool by
ranking all the candidates. Intuitively, the be�er a model captures
the pa�erns underlying people’s activities, the more likely it ranks
the ground truth to top positions. We thus use Mean Reciprocal
Rank (MRR) to quantify the e�ectiveness of a model. Given a set
Q of queries, the MRR is de�ned as: MRR = (

∑ |Q |
i=1 1/ranki )/|Q |,

where ranki is the ranking of the ground truth for the i-th query.
We describe the ranking procedures of di�erent methods as fol-

lows. Again consider region retrieval as an example. For ReAct, we
compute the average cosine similarity of each candidate region to
the observed elements (hour and keywords), and rank them in the
descending order of the similarity; for LGTA and MGTM, we com-
pute the likelihood of observing each candidate given the keywords,
and rank the candidates by likelihood; for Tensor and SVD, we use
the decompositions to reconstruct densi�ed co-occurrence tensor
and matrices, and then retrieve the tensor/matrix entries to rank
the candidates; for TF-IDF, we rank the candidates by computing
average tf-idf similarities.

On each data set, we randomly generate 20 one-hour query
windows in 2014.08.01 – 2014.11.30, and use all the tweets in those
windows as test instances. Within those query windows, there
are ∼11 thousand test tweets in LA, and ∼12 thousand test tweets
in NY. We set the number of candidates to M = 10 for di�erent
retrieval tasks except for category retrieval (there are only nine
categories in total). For each query window, we use the tweets that
have arrived before the window start to train di�erent models. All
the methods except for ReAct work in a batch manner, hence we
have to train them repeatedly for 20 times, with di�erent training
data for di�erent query windows. As ReAct works online, we use
a one-hour window to hold new records and update ReAct hourly.
We ensure ReAct uses the same training data as other methods
during the one-pass training process.

4.2 E�ectiveness Comparison

4.2.1 �alitative Results. We �rst use several examples to ex-
amine whether ReAct can capture the dynamic evolutions of spa-
tiotemporal activities, as well as how well it models the correlations
between location, time, and text. Speci�cally, we perform one-pass
training of RA-Decay on LA and NY, and launch a bunch of queries
at di�erent stages. For each query, we retrieve the top-10 most
similar elements with di�erent types from the entire search space.
Textual �eries. Figure 4(a) shows the results when we query
with the keyword ‘beach’ on LA. We �nd the results quite mean-
ingful: the top regions fall along the coastline; the top POIs are
famous beach a�ractions; and the top keywords well re�ect peo-
ple’s activities on the beach (e.g., ‘sand’, ‘boardwalk’). Figure 4(b)
and 4(c) show the results for the query ‘outdoor + weekend’ issued

Table 1: �e MRRs of di�erent methods for location retrieval. For

each test tweet, we assume its timestamp and keywords are ob-

served, and perform location retrieval at two granularities: 1) re-
gion retrieval retrieves the ground-truth region; and 2) POI retrieval
retrieves the ground-truth POI (for Foursquare-linked tweets).

Method Region Retrieval POI Retrieval

LA NY LA NY
LGTA 0.3583 0.3544 0.5889 0.5674
MGTM 0.4007 0.391 0.5811 0.553
Tensor 0.3592 0.3641 0.6672 0.7399
SVD 0.3699 0.3604 0.6705 0.7443
TF-IDF 0.4114 0.4605 0.719 0.776

RA-Base 0.5373 0.5597 0.7845 0.8508
RA-Semi 0.5586 0.5632 0.8155 0.8712
RA-Cons 0.5714 0.5864 0.8311 0.8896

RA-Decay 0.5802 0.5898 0.8473 0.885

Table 2: �e MRRs of di�erent methods for activity retrieval. For

each test tweet, we assume its location and timestamp are observed,

and retrieve activities at two granularities: 1) category retrieval re-
trieves the ground-truth category (for Foursquare-linked tweets);

and 2) keyword retrieval retrieves the ground-truth message.

Method Category Retrieval Keyword Retrieval

LA NY LA NY
LGTA 0.4409 0.4527 0.3392 0.3425
MGTM 0.4587 0.464 0.3501 0.343
Tensor 0.8635 0.7988 0.4004 0.3744
SVD 0.8556 0.7826 0.4098 0.3728
TF-IDF 0.9137 0.8259 0.5236 0.4864

RA-Base 0.6225 0.5874 0.5693 0.5538
RA-Semi 0.9056 0.8993 0.5832 0.5793
RA-Cons 0.92 0.8964 0.6097 0.5887
RA-Decay 0.9272 0.9026 0.6174 0.5928

on NY for two di�erent days. Interestingly, the results obtained for
the two days both relate to ‘outdoor’, but exhibit clear evolutions.
While the results for 2014.08.30 contain many swimming-related
activities, those for 2014.10.30 are mostly �tness venues. Based on
such phenomena, one can clearly see that ReAct captures not only
the inter-type correlations between di�erent a�ributes but also the
temporal evolutions underlying spatiotemporal activities.
Spatial �eries. Figure 4(d) and 4(e) illustrate the evolutions of
two spatial queries: 1) the Metlife Stadium; and 2) the Universal
Studio. Again, we can see the results well match the query location
and meanwhile re�ect urban dynamics clearly. For the Metlife
Stadium query, the top keywords evolve from concert-related ones
to football-related ones. It is because the NFL season opens in
early September, and people start visiting the stadium to watch the
games of the Giants and the Jets. For the Universal Studio query,
we intentionally include Halloween and �anksgiving in the query
days. In such a se�ing, we �nd the la�er two lists contain holiday-
speci�c keywords, verifying the capability of ReAct for capturing
the most recent activity pa�erns.



Region POI Keyword

!e Big Vee on Venice
Pacific Ocean

Hermosa Beach
Westin on !e Long Beach

Port of Long Beach
It Yoga

L@P Pool
Manha#an Beach Volleyball
Venice Coffee and Creamery

Muscle Beach Juice Bar

beach
beachlife

sand
boardwalk

long
venice
breeze
ocean
cruiser
wave

(a) �ery = ‘beach’ + 3pm (2014.08.30@LA)

Region POI Keyword

Union Street Bridge
Hancock & Malcolm X

Mccarren Pool Lap Swim
!e Pool

!e Roo"op at Rockrose
!e Wave Pool

William Playground
Astoria Park
Shorefront

Teardrop Park

weekend
outdoor
sunday

saturday
lovely
enjoy

sundayfunday
swimming

nofilter
pool

(b) �ery = ‘outdoor + weekend’ (2014.08.30@NY)
Region POI Keyword

388 Greenwich St. Courtyard
King’s Bay Basketball

Yoga Vida
Ya Moms

Elite Performance Training
!e Fi"ing Room

Downing St. Playground
Disco Teadance at Howl

Temperance Fountain
Tompkins Outdoor Gym

weekend
outdoor
arrive

urbanspacenyc
visit

spooky
rainy

winter
workout
fabulous

(c) �ery = ‘outdoor + weekend’ (2014.10.30@NY)

2014.08.30 2014.09.30 2014.11.30!ery Location
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tour

concert
shady
malice

monster
vick

eminem
a"ractive
rooting

nyjets
touchdown

jet
giant

hamstring
football
nygiants

jetsnation
bigblue
score

49ers
touchdown

jet
steelers
giant
nyjets

nygiants
nfl
fan

niner

(d) �ery = ‘(40.8128, -74.0764)’ (Metlife Stadium@NY)
2014.08.30 2014.10.30 2014.11.27!ery Location

universal
studio
minion
mummy

despicable
unistudios
hollywood

thesimpsons
globe

jurassic

universal
studio

horrornights
bates

halloween
photo
night

minion
horror
suvived

universal
studio

sheraton
thanksgiving
hollywood

tour
holiday
dinner

transformer
hackthon

(e) �ery = ‘(34.1381, -118.3534)’ (Universal Studio@LA)

Figure 4: Illustrative cases. Figure 4(a), 4(b), and 4(c) are textual queries issued on di�erent days (i.e., the dates in bracket). For

each query, we use the trained model on the issuing day to retrieve ten most similar regions (the markers in the map denote

the region centers), POIs, and keywords, based on cosine similarities of the embeddings. Figure 4(d) shows two spatial queries

at the Metlife Stadium and Universal Studio. For each query, we retrieve ten most similar keywords on di�erent days.

4.2.2 �antitative Results. Table 1 and 2 report the quantitative
results of di�erent methods for location and activity retrievals,
respectively. As shown, on all of the four sub-tasks, ReAct and
its variants achieve much higher MRRs than the baseline methods.
Compared with the two geographical topic models (LGTA and
MGTM), ReAct yields as much as 62% performance improvement
for location retrieval, and 83% for activity retrieval. �ere are three
factors for explaining the performance gap: (1) Neither LGTA nor
MGTM models the time factor, and thus fails to leverage the time
information for prediction; (2) ReAct emphasizes recent records
to capture up-to-date spatiotemporal activities, while LGTA and
MGTM work in batch and treat all training instances equally; and (3)
Instead of using generative models, ReAct directly maps di�erent
data types into a common space to capture their correlations more
directly.

Tensor, SVD, and TF-IDF have be�er performance than LGTA
and MGTM by modeling time and category, yet ReAct still outper-
forms them by large margins. Interestingly, TF-IDF turns out to
be a strong baseline, demonstrating the e�ectiveness of the tf-idf
similarity for the retrieval tasks. SVD and Tensor can e�ectively
recover the co-occurrence matrices and tensor by �lling in the miss-
ing values. However, the raw co-occurrence seems a less e�ective
relatedness measure for location and activity retrieval.

Comparing the variants of ReAct, we see clear performance gaps
between RA-Base and RA-Semi, particularly for the category re-
trieval task. �e major di�erence between RA-Base and RA-Semi is
that, RA-Base just treats category descriptions as keywords, while
RA-Semi uses activity categories as labels to guide embedding. �is
phenomenon shows the semi-supervised paradigm indeed helps
propagate structured category information into the embedding
process to generate high-quality embeddings.

RA-Semi is inferior to RA-Decay and RA-Cons considerably. Al-
though the three variants all use semi-supervised training, RA-Semi

treats all the training instances equally whereas the other two work
online and emphasize recent instances more. �is fact veri�es that
there are notable evolutions underlying people’s activities in the
four-month time period, and the recency-aware nature of ReAct
e�ectively captures such evolutions to be�er suit users’ retrieval
needs. Finally, examining the performance of RA-Decay and RA-
Cons, we �nd that the life-decaying learning strategy performs
slightly be�er than the constraint-based one in practice, but at the
cost of extra space and time overhead.

4.3 E�ects of Parameters

Lastly, we study the e�ects of di�erent parameters on the perfor-
mance of ReAct. Figure 5(a) and 5(b) show the e�ects of the latent
dimension D and the number of epochs N . Since the trends are
very similar for �ne-grained and coarse-grained retrieval tasks, we
omit the results for POI retrieval and category retrieval for clarity.
As shown in Figure 5(a), the MRRs of both methods keep increasing
with D and gradually converge. �is phenomenon is expected be-
cause a larger D leads to a more expressive model that can capture
latent semantics more accurately. From Figure 5(b), one can see
as N increases, the performance of ReAct also increases �rst and
�nally becomes stable: when N is small, the updated embeddings
do not incorporate the new information su�ciently; when N is
large, both the life-decaying and constraint-based strategies can
e�ectively prevent ReAct from over��ing the new records.

Figure 5(c) and 5(d) depict the e�ects of τ and λ on the perfor-
mance of the two learning strategies, respectively. As shown, for
life-decaying learning, its performance �rst increases with τ , then
becomes stable, and �nally deteriorates. �e reason is two-fold:
1) a too small τ makes the bu�er contain too many old records
in the history, thus diluting the most recent information; and 2)
a too large τ leads to a bu�er that contains only recent records,
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Figure 5: Parameter study on LA. Figure 5(a) and 5(b) show

the e�ects of the latent dimension D and the number of

epochs N on RA-Decay and RA-Cons. Figure 5(c) shows the

e�ect of the decaying rate τ onRA-Decay. Figure 5(d) shows

the e�ect of the regularization strength λ on RA-Cons.

making the result model su�er from over��ing. �e e�ect of λ on
the constraint-based learning is similar. A too large λ causes un-
der��ing of the new records, while a too small λ causes over��ing.
Besides the above parameters, we have also studied the e�ects of
the smoothing parameters α and β , and found that the performance
of ReAct varied no more than 3% when α and β are set to the range
[0.05, 0.5], thus we omit the results to save space.

5 RELATEDWORK

Spatiotemporal Activity Modeling. Previous approaches to spa-
tiotemporal activity modeling mostly rely on geographical topic
modeling, which extends classical topic models to discover repre-
sentative topics for di�erent regions. Speci�cally, Sizov et al. [28]
extend LDA [5] by assuming that each latent topic has a multino-
mial distribution over text, and two Gaussians over latitudes and
longitudes. �ey later upgrade the model to �nd topics that have
complex and non-Gaussian distributions [16]. Yin et al. [34] extend
PLSA [12] by assuming that each region has a normal distribution
that generates locations, as well as a multinomial distribution over
the latent topics that generate text. While the above models are
designed to detect crowd-level geographical topics, Hong et al. [13]
and Yuan et al. [35] introduce the user factor in the modeling pro-
cess to infer individual-level user preferences. Our work resembles
the studies [16, 28, 34] more because we also model crowd-level
activities instead of individual-level preferences. �at said, ReAct
di�ers from these methods notably. Instead of using latent states to
indirectly bridge di�erent data modalities, it jointly maps location,
time, and text into the same space, which not only frees us from

imposing distribution assumptions for di�erent modalities, but also
makes it scalable.

Representation learning techniques have been proposed for learn-
ing distributed representations for words [22], graph nodes [25, 29,
30], user-item interactions [10], multimedia data [23], etc.. Recently,
Zhang et al. [38] propose CrossMap, a cross-modal representa-
tion learning method for spatiotemporal activity modeling. It �rst
detects the hotspot regions and time periods underlying people’s
activities, and then jointly maps di�erent regions, periods, and key-
words into the same latent space. �e key di�erence between ReAct
and CrossMap is two-fold: (1) Instead of handling static data, Re-
Act processes continuous GTSM streams and learns recency-aware
models online; and (2) while CrossMap learns cross-modal embed-
dings in an unsupervised way, ReAct adopts a semi-supervised
framework, which is capable of leveraging activity category infor-
mation to learn be�er-quality embeddings.
Spatiotemporal event detection. Several studies [1, 8, 15, 19, 20,
27, 40] use GTSM for spatiotemporal event detection. Sakaki et al.
[27] train a classi�er to judge whether an incoming tweet is related
to an earthquake or not, and release an alarm when the number of
earthquake-related tweets is large. Krumm et al. [19] monitor the
spatiotemporal distributions of tweet streams, and detect spikes in
the signal as interesting events. Zhang et al. [40] propose a method
that achieves real-time local event detection from geo-tagged tweet
streams. �ere is a clear di�erence between spatiotemporal event
detection and spatiotemporal activity modeling. �e former at-
tempts to extract unusual activities bursted in local areas, whereas
the la�er aims at summarizing the typical activities at di�erent
locations and time.
Human mobility modeling. �ere have also been studies that
leverage GTSM data to extract mobility pa�erns underlying peo-
ple’s activities. Cho et al. [7] collect large-scale checkin data and
�nd that people’s activities are usually centered around a few �xed
locations, and exhibit strong periodicity. Yuan et al. [36] propose a
Bayesian non-parametric model to automatically extract the regions
that a user visits periodically. Zhang et al. [37] apply sequential
pa�ern mining techniques to extract frequent movement sequences
from check-in data. Later, Zhang et al. [39] apply the Hidden
Markov Model to GTSM data, observing that there are latent states
underlying people’s daily activities and people move between them
with strong regularity. Although these mobility modeling methods
also models the time factor, they aim to understand the temporal
transitions of human movements in the physical world, whereas
we focus on the temporal evolution of global-level activities.
Temporal evolution modeling. A handful of studies [17, 26, 41]
have investigated the temporal evolutions of spatiotemporal activi-
ties. Noulas et al. [24] analyze user activities with Foursquare check-
ins and �nd that the checkin data reveal meaningful spatiotemporal
pa�erns. Zhang et al. [41] �nd people’s activities exhibit tempo-
ral dynamics via analyzing the number of Foursquare checkins
in di�erent areas. Kling et al. [17] apply LDA to checkin data by
treating hourly-aggregated checkins as documents. �ey show no-
table topical evolutions across di�erent hours. Pozdnoukhov et al.
[26] �rst apply online LDA to the streaming tweet data, and then
analyze the spatiotemporal distributions of the extracted topics in
a post-processing step. While these pioneering studies have clearly



demonstrated that dynamic evolutions exist in urban activities,
they do not address our problem of designing a uni�ed model that
dynamically captures the inter-type correlations among location,
time, and text from GTSM streams.

Modeling the temporal evolutions in data streams has also been
studied for classical tasks like classi�cation [33], clustering [2, 6],
topic modeling [3, 4, 14, 21], and recommendation [11, 18]. For
instance, Blei et al. [4] propose the Dynamic Topic Model, which
uses the Markovian assumption and state space models to capture
dynamic topical evolutions. Distinguished from these studies, our
problem is new in that we aim to capture the dynamic evolutions
for spatiotemporal activity modeling. From the technical stand-
point, we model the dynamic evolutions in a novel framework of
semi-supervised embedding, rendering our method fundamentally
di�erent from existing techniques.

6 CONCLUSION

We proposed a recency-aware spatiotemporal activity model that
learns from geo-tagged social media streams online. Our proposed
model, ReAct, embeds all the regions, hours, and keywords into
the same latent space with a novel semi-supervised multimodal em-
bedding paradigm. ReAct employs two strategies to emphasize the
information contained in newly arrive records without over��ing.
Our empirical evaluations have shown that ReAct outperforms the
existing spatiotemporal activity modeling methods signi�cantly in
location and activity retrieval tasks.
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