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Abstract—Many countries are suffering from severe air pollution. Un-
derstanding how different air pollutants accumulate and propagate is
critical to making relevant public policies. In this paper, we use urban big
data (air quality data and meteorological data) to identify the spatiotem-
poral (ST) causal pathways for air pollutants. This problem is challenging
because: (1) there are numerous noisy and low-pollution periods in the
raw air quality data, which may lead to unreliable causality analysis;
(2) for large-scale data in the ST space, the computational complexity
of constructing a causal structure is very high; and (3) the ST causal
pathways are complex due to the interactions of multiple pollutants
and the influence of environmental factors. Therefore, we present pg-
Causality, a novel pattern-aided graphical causality analysis approach
that combines the strengths of pattern mining and Bayesian learning to
efficiently identify the ST causal pathways. First, pattern mining helps
suppress the noise by capturing frequent evolving patterns (FEPs) of
each monitoring sensor, and greatly reduce the complexity by selecting
the pattern-matched sensors as “causers”. Then, Bayesian learning
carefully encodes the local and ST causal relations with a Gaussian
Bayesian Network (GBN)-based graphical model, which also integrates
environmental influences to minimize biases in the final results. We
evaluate our approach with three real-world data sets containing 982
air quality sensors in 128 cities, in three regions of China from 01-Jun-
2013 to 31-Dec-2016. Results show that our approach outperforms the
traditional causal structure learning methods in time efficiency, inference
accuracy and interpretability.

Index Terms—Causality; pattern mining; Bayesian learning; spatiotem-
poral (ST) big data; urban computing.

1 INTRODUCTION

Recent years have witnessed the air pollution problem becoming
a severe environmental and societal issue around the world. For
example, in 2015, the average concentration of PM2.5 in Beijing
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is greater than 150, classified as hazardous to human health by the
World Health Organization, on more than 46 days. On Dec 7th
2015, the Chinese government issues the first red alert because of
the extremely heavy air pollution, leading to suspended schools,
closed construction sites, and traffic restrictions. Though many
ways have been deployed to reduce the air pollution, the severe air
pollution in Beijing has not been significantly alleviated.

Identifying the causalities has become an urgent problem for
mitigating the air pollution and suggesting relevant public policy
making. Previous research on the air pollution cause identification
mostly relies on chemical receptor [1] or dispersion models [2].
However, these approaches often involve domain-specific data
collection which is labor-intensive, or require theoretical assump-
tions that real-world data may not guarantee. Recently, with
the increasingly available air quality data collected by versatile
sensors deployed in different regions, and pubic meteorological
data, it is possible to analyze the causality of air pollution through
a data-driven approach.

The goal of our research is to learn the spatiotemporal (ST)
causal pathways among different pollutants, by mining the de-
pendencies among air pollutants under different environmental
influences. Fig. 1 shows two example causal pathways for PM10
in Beijing. Let us first consider the pathway in Fig. 1(a). When
the wind speed is less than 5 m/s, the high concentration of PM10
in Beijing is mainly caused by SO2 in Zhangjiakou and PM2.5 in
Baoding. In contrast, as shown in Fig. 1(b), when the wind speed
is larger than 5m/s, PM10 in Beijing is mainly due to PM2.5 in
Zhangjiakou and NO2 in Chengde. Based on this example, we
can see the spatiotemporal (ST) causal pathways should reflect
the following two aspects: 1) the structural dependency, which
indicates the reactions and propagations of multiple pollutants in
the ST space; and 2) the global confounder, which denotes how
different environmental conditions could lead to different causal
pathways.

(a) Causal pathways (wind < 5m/s)
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Fig. 1. An illustration of identifying causal pathways.

However, identifying the ST causal pathways from big air
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quality and meteorological data is not trivial because of the
following challenges. First, not all air pollution data are useful
for causality analysis. In the raw sensor-collected air quality data,
there are numerous uninteresting fluctuations and noisy variations.
Including such data into the causality analysis process is expected
to lead to unreliable conclusions. Second, the sheer size of the
air quality makes the causality analysis difficult. In most air
quality monitoring applications, thousands of sensors are deployed
at different locations to record the air quality hourly for years.
Discovering the ST causal relationships from such a large scale is
challenging. Third, air pollution causal pathways are complex in
nature. The air polluting process typically involves multiple types
of pollutants that are mutually interacting, and is subject to local
reactions, ST propagations and confounding factors, such as wind
and humidity.

Existing data mining techniques for learning the causal path-
ways have been proposed from two perspectives: pattern-based
[3] [4] and Bayesian-based [5] [6]. Pattern-based approaches
aim to extract frequently occurring phenomena from historical
data by applying pattern mining techniques; while Bayesian-
based techniques use directed acyclic graphs (DAGs) to encode
the causality and then learn the probabilistic dependencies from
historical data. Though inspiring results have been obtained by
pattern-based and Bayesian-based techniques, both approaches
have their merits and downsides. Pattern-based approaches can fast
extract a set of patterns (e.g., frequent patterns, contrast patterns)
from historical air quality data. Such patterns can capture the
intrinsic regularity present in historical air quality data. However,
they only provide shallow understanding of the air polluting
process, and there are usually a huge number of frequent patterns,
which largely limits the usability of the pattern set. On the other
hand, Bayesian-based approaches depict the causal dependencies
between multiple air pollutants in a principled way. However, the
performance of Bayesian-based models is highly dependent on the
quality of the training data. When there exist massive noise and
data sparsity, as the case of the air quality data, the performance
of the Bayesian-based models is limited. Besides, Bayesian-based
approaches are limited by high computational cost [7] and the
impact of confounding [8].

We propose pg-Causality, which combines pattern mining
with Bayesian learning to unleash the strengths of both. We claim
pg-Causality is essential for ST causal pathway identification, with
the contributions listed as below:
• First, we propose a framework that combines frequent

pattern mining with Bayesian-based graphical model to identify
the spatiotemporal (ST) causal relationship between air pollutants
in the ST space. The frequent pattern mining [9] can accurately
estimate the correlation between the air quality of each pair of
locations, capturing the meaningful fluctuation of two time series.
Using the correlation patterns, whose scales are significantly
smaller than the raw data, as an input of a Bayesian network (BN),
the computational complexity of the Bayesian network causality
model has been significantly reduced. The patterns also help
suppress the noise for learning a Bayesian network’s structure.
This not only leads to a more efficient but also more effective
causal pathway identification. We also integrate the environmental
factors in the Bayesian-based graphical model to minimize the
biases in the final results.
• Second, we have carefully evaluated our proposed approach

on three real data sets with 3.5 years’ air quality and meteorolog-
ical data collected from hundreds of cities in China. Our results

show that the proposed approach is significantly better than the
existing baseline methods in time efficiency, inference accuracy
and interpretability.

2 RELATED WORK

Data-driven Air Pollution Analysis: In recent years, air pollution
analysis has drawn a lot of attention from the data mining com-
munity [10] [11]. [12] [13] [14] propose data-driven approaches
to infer and forecast fine-grained air quality using heterogeneous
urban data. [15] estimates the gas consumption and pollutants
emission of vehicles, based on the vehicles’ GPS trajectories in
the road network. Our paper differs from these works in that,
we target at understanding the underlying causal pathways of air
pollution. We identified the most likely “causers” in the geospace
by learning the most likely graphical structures of an ST causality
network, rather than predicting air quality or estimating pollutant
emission with a black-box neural network.
Causality Modelling for Time Series: Causal modelling has
been systematically studied for over half a century [16] [17], from
the statistical and mathematical perspectives. For time series data,
existing works on modelling causality can be classified into three
categories. The first category is based on Rubin’s unit-level causal-
ity [16], which is the statistical analysis on the potential outcome
between two groups, given “treatment” and “control”, respectively
[18]. With the increase of computation power, variations of unit-
level causality were conducted, such as the cause-and-effect of
advertising on behaviour change [8], genes on phenotype [19],
etc. The second category considers a pair of time series, and
aims to quantify the strength of causal influence from one time
series to another. Researchers have developed different measures
for this purpose, such as transfer entropy [20], and Granger’s
causality [17] [21]. The third category aims to extract graphical
causal relations from multiple time series. [22] combines graphical
techniques with the classic Granger causality, and proposes a
model to infer causality strengths for a large number of time
series variables. Pearl’s causality model [5] encodes the causal
relationships in a directed acyclic graph (DAG) [23] for prob-
abilistic inference. The most well used graphical representation
of DAG is Bayesian network (BN) [23]. Temporal dependencies
can be incorporated in the DAG by using Murphy’s dynamic
Bayesian network (DBN) [24]. There are also various extensions
that incorporate spatiotemporal dependencies in the domain of
traffic [4], climate [25] [26] [27] and flood prediction [28].

Our proposed approach pg-Causality belongs to the third
category, i.e., using graphical model to detect causalities from
multiple time series, where “p” refers to “pattern-aided” and “g”
refers to graphical causality. The terms “causality” or “causalities”
used later in this article are actually graphical causality.

The approach differs from the above works in three aspects: (1)
As a data-driven causality learning method, we combine pattern
mining and Bayesian learning to make the causality analysis
more efficient and robust to the noise present in the input data.
(2) Besides the multi-variate time series data, we also consider
the impact of confounding given different environmental factors
for unbiased causality analysis. (3) Since we cannot conduct
human intervention on air pollution at the nation-wide scale, this
article identifies the causality from historical data. We proposed
a Bayesian-based graphical causality model to capture the depen-
dencies among different air pollution in the spatiotemporal (ST)
space. Verification is based on the training accuracy, synthetic
results, as well as observation.
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3 FRAMEWORK

In this section, we first describe the problem of identifying spatio-
temporal causal pathways for air pollutants, and then introduce the
framework of pg-Causality.

Let S = {s1, s2, . . . , sn, . . . } be the location set of the air
quality monitoring sensors deployed in a geographical region.
Each sensor is deployed at a location sn ∈ S to periodically
measure the target condition around it. All sensors have synchro-
nized measurements over the time domain T = {1, 2, . . . ,T},
where each t ∈ T is a timestamp. We also consider a set
C = {c1, c2, . . . , cM} of pollutants. Given cm ∈ C, sn ∈ S ,
and t ∈ T (1 ≤ m ≤ M, 1 ≤ n ≤ N, 1 ≤ t ≤ T),
we use Pcmsnt to denote the measurement of pollutant cm at
location sn and timestamp t. In addition, we also have the
meteorological data at timestamp t for the entire geographical
region, denoted asEt, as a vector of environmental factors. Using
the air pollutant measurements and meteorological data, we aim
to identify faithful causal relationships among different pollutants
at different locations. We integrated the environmental facotors
Et to the causal pathways through a graphical model, setting the
number of clusters as K and time lag constraint as L. We list the
notations in TABLE 1.

TABLE 1
Notation Table.

S The location set of the air quality monitoring sensors.
S = {s1, s2, . . . , sn, . . . }

sn ∈ S The location of the n-th neighborhood sensor.
s0 The location of the target sensor.
N Number of “causers” in the neighborhood.
T Timestamps domain T = {1, 2, . . . ,T}.

t ∈ T The current timestamp.
T Number of timestamps.
C Category set of pollutants C = {c1, c2, . . . , cM}.
M Number of pollutants measured by each sensor.

cm ∈ C The pollutant of the m-th category.
cmn The most likely category of “causer” pollutant at sn.
Pcmsnt Pollutant cm at location sn and timestamp t.

1 ≤ m ≤ M, 1 ≤ n ≤ N, 1 ≤ t ≤ T.
K Number of clusters in the graphical causality model.

l ∈ [1,L] Time lag in the graphical causality model.
Et The environmental factors. Et = {E(1)

t , E
(2)
t , . . . }.

Fig. 2 shows the framework of our proposed approach pg-
Causality. It consists of two main modules: pattern mining and
Bayesian Network Learning, detailed as follows.

Mining frequent 

evolving patterns

Selecting ST candidate 
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Integrating confounders

Refining causal structures

K clusters 

Bayesian learning module

Pattern mining module

 Generating initial causal 
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Air Quality Meteorology
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Fig. 2. The framework of our approach.
Pattern Mining Module: This module first extracts the frequent
evolving patterns (FEPs) [9] for each sensor. The FEPs essentially
capture the air quality changing behaviors that frequently appear
on the target sensor. By mining all FEPs from the historical air
quality data, this module efficiently captures the regularity in
raw data and largely reduces the noise (Section 4.1 and 4.2).
Afterwards, we examine the pattern-based similarities between
locations to select candidate causers for each target sensor. By

comparing the FEPs occurring on different sensors, we can obtain
a shallow understanding of the causal relationships between dif-
ferent sensors, which can be further utilized to simplify learning
the causal structures (Section 4.3).
Bayesian Learning Module: By using the matched timestamps of
the extracted FEPs at different sensors, together with the selected
candidate sensors in the pattern mining module, this module
further trains high-quality causal pathways from the large-scale
air quality and context data in an effective and scalable way.
We first generate the initial causal pathways from the selected
candidate causers, taking into account both the local interactions
of multiple air pollutants and the ST propagations (Section 5.1).
Then to minimize the impact of confounding (Section 5.2), we in-
tegrate the confounders (e.g., wind, humidity) into the a Gaussian
Bayesian Network (GBN)-based graphical model. Last, we refine
the parameters and structures of the Bayesian network to generate
the final causal pathways (Section 5.3).

We argue that the combination of two modules helps effi-
ciently identify the causal pathways of the air pollutants. First,
the meaningful behaviors of each time series selected by the
pattern mining module could significantly reduce the noise in
calculating the causal relationships. For example, Fig. 3(a) shows
an illustration of three time series at sensors 1, 2, and 3, in North
China, with sensor 1 as the target sensor. When simply using
statistical models to identify the dependencies among the three
time series, the causal pathway 2 → 1 and 3 → 1 cannot
be faithfully justified, since the fluctuations and low pollution
periods will make the dependency metric for sensors 2 → 1 and
3 → 1 very similar. By using the pattern mining module, we
found that the increasing behaviors of sensor 2 frequently happen
before sensor 1, and thus can select sensor 2 as the candidate
“causer” for target sensor 1. Second, the selected “causers” by
the pattern mining module will greatly reduce the complexity of
the Bayesian structure learning. For example, Fig. 3(b) illlustrates
a scenario of learning the 1-hop Bayesian structure from 100
sensors to a target pollutant. We use the pattern mining module to
select top “N = 2” candidate causers, thus reducing the searching
space from O(100) to O(2) for Bayesian structure construcion.
Third, we verify the effectiveness of causal pathway learning
with pg-Causality, compared with only using Bayesian learning
without pattern mining. Combining pattern mining with Bayesian
learning demonstrates better inference accuracy, time efficiency,
and interpretability.
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Fig. 3. Illustration of how pattern mining helps to reduce the effect of
fluctuations in causal structure learning.

4 THE PATTERN MINING MODULE

4.1 Frequent Evolving Pattern
To capture frequent evolving behaviors of each sensor, we define
frequent evolving pattern (FEP), an adaption of the classic sequen-
tial pattern concept [29]. As the sequential patterns are defined on
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transactional sequences, we first discretize the raw air quality data.
Given a pollutant cm at sensor sn, the measurements of cm at sn
over the time domain T form a time series. We discretize the
time series as follows: (1) partition it by day to obtain a collection
of daily time series, denoted as Pcmsn ; and (2) for each daily
time series 〈(p1, t1), (p2, t2), . . . , (pl, tl)〉, map every real-value
measure pi (1 ≤ i ≤ l) to a discrete level p̂i using symbolic
approximation aggregation [30]. After discretization, we obtain a
database of symbolic sequences, as defined in Definition 1.

Definition 1 (Symbolic Pollution Database). For pollutant cm
and sensor sn, the symbolic pollution database P̂cmsn is a
collection of daily sequences. Each sequence d ∈ P̂cmsn
has the form 〈(p̂1, t1), (p̂2, t2), . . . , (p̂l, tl)〉where an element
(p̂i, ti) means the pollution level of cm at sensor sn and time
ti is p̂i.

Given the database P̂cmsn , our goal is to find frequent evolving
behaviors of sn regarding cm. Below, we introduce the concepts
of evolving sequence and occurrence.

Definition 2 (Evolving Sequence). A length-k evolving sequence
T has the form T = p̂1

∆t−→ p̂2
∆t−→ · · · ∆t−→ p̂k, where (1)

∀i > 1, p̂i−1 6= p̂i and (2) ∆t is the maximum transition time
between consecutive records.

Definition 3 (Occurrence). Given a daily sequence d =
〈(p̂1, t1), (p̂2, t2), . . . , (p̂l, tl)〉 and an evolving sequence
T = p̂1

∆t−→ p̂2 · · ·
∆t−→ p̂k (k ≤ l), T occurs in d (denoted

as T v d) if there exist integers 1 ≤ j1 < j2 < · · · < jk ≤ l
such that: (1) ∀1 ≤ i ≤ k, p̂ji = p̂i; and (2) ∀1 ≤ i ≤ k− 1,
0 < tji+1 − tji ≤ ∆t.

For clarity, we denote an evolving sequence p̂1
∆t−→

p̂2 · · ·
∆t−→ p̂k as p̂1 → p̂2 · · · → p̂k when the context is clear.

Now, we proceed to define support and frequent evolving pattern.

Definition 4 (Support). Given P̂cmsn and an evolving sequence
T , the support of T is the number of days that T occurs, i.e.,
Sup(T ) = |{o|o ∈ P̂cmsn ∧ T v o}|.

Definition 5 (Frequent Evolving Pattern). Given a support thresh-
old σ, an evolving sequence T is a frequent evolving pattern
in database P̂cmsn if Sup(T ) ≥ σ.

4.2 The FEP Mining Algorithm

Now we proceed to discuss how to mine all FEPs in any symbolic
pollution database. It is closely related to the classic sequential
pattern mining problem. However, recall that there are two con-
straints in the definition of FEP: (1) the consecutive symbols must
be different; and (2) the time gap between consecutive records
should be no greater than the temporal constraint ∆t. A sequential
pattern mining algorithm needs to be tailored to ensure these two
constraints are satisfied.

We adapt PrefixSpan [29] as it has proved to be one of the
most efficient sequential pattern mining algorithms. The basic idea
of PrefixSpan is to use short patterns as the prefix to project the
database and progressively grow the short patterns by searching
for local frequent items. For a short pattern β, the β-projected
database Dβ includes the postfix from the sequences that contain
β. Local frequent items in Dβ are then identified and appended to
β to form longer patterns. Such a process is repeated recursively
until no more local frequent items exist. One can refer to [29] for
more details.

Given a sequence α and a frequent item p̂, when creating p̂-
projected database, the standard PrefixSpan procedure generates
one postfix based on the first occurrence of p̂ in α. This strategy,
unfortunately, can miss FEPs in our problem.

TABLE 2
An example symbolic pollution database.

Day Daily sequence
d1 〈(p̂2, 0), (p̂1, 10), (p̂2, 30), (p̂3, 40)〉
d2 〈(p̂1, 0), (p̂2, 30), (p̂1, 360), (p̂2, 400), (p̂3, 420)〉
d3 〈(p̂2, 0), (p̂3, 30)〉
d4 〈(p̂1, 0), (p̂1, 120), (p̂3, 140), (p̂2, 150), (p̂3, 180)〉
d5 〈(p̂2, 50), (p̂2, 80), (p̂3, 120), (p̂1, 210)〉

Example 1. Let ∆t = 60 and σ = 3. In the database shown
in TABLE 2, item p̂1 is frequent. The p̂1-projected database
generated by PrefixSpan is:

(1) d1/p̂1 = 〈(p̂2, 20), (p̂3, 30)〉
(2) d2/p̂1 = 〈(p̂2, 30), (p̂1, 360), (p̂2, 400), (p̂3, 420)〉
(3) d4/p̂1 = 〈(p̂1, 120), (p̂3, 140), (p̂2, 150), (p̂3, 180)〉

The elements satisfying t ≤ 60 are (p̂2, 20), (p̂3, 30) and
(p̂2, 30). No local item is frequent, hence p̂1 cannot be grown
any more.

To overcome this, given a sequence α and a frequent item p̂,
we generate a postfix for every occurrence of p̂.
Example 2. Also for Example 1, if we generate a postfix for every

occurrence of p̂1, the p̂1-projected database is:

(1) d1/p̂1 = 〈(p̂2, 20), (p̂3, 30)〉
(2) d2/p̂1 = 〈(p̂2, 30), (p̂1, 360), (p̂2, 400), (p̂3, 420)〉
(3) d2/p̂1 = 〈(p̂2, 40), (p̂3, 60)〉
(4) d4/p̂1 = 〈(p̂1, 120), (p̂3, 140), (p̂2, 150), (p̂3, 180)〉
(5) d4/p̂1 = 〈(p̂3, 20), (p̂2, 30), (p̂3, 60)〉

The items p̂2 and p̂3 are frequent and meanwhile satisfy
the temporal constraint, thus longer patterns p̂1

60−→ p̂2 and
p̂1

60−→ p̂3 are found in the projected database.

Using the above projection principle, the projected database
includes all postfixes to avoid missing patterns under the time
constraint. Algorithm 1 sketches our algorithm for mining FEPs.
The procedure is similar to the standard PrefixSpan algorithm in
[29], except that the aforementioned full projection principle is
adopted, and the time constraint ∆t is checked when searching
for local frequent items.

Fig. 4. An illustration of the pattern-matched timestamps. The blue
dashed lines represents the PM2.5 time series in Beijing during a two-
year period, and the red points denote the timestamps at which a certain
FEP has occurred (σ = 0.1).

The output of Algorithm 1 is the set of all FEPs for the given
database, along with the occurring timestamps for each FEP. As
an example, Fig. 4 shows the raw PM2.5 time series in Beijing
during a two-year period. After mining FEPs on the symbolic
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Algorithm 1: Mining frequent evolving patterns.
Input: support threshold σ, temporal constraint ∆t, symbolic

pollution database P̂
1 Procedure InitialProjection(P̂ , σ, ∆t)
2 L← frequent items in D;
3 foreach item i in L do
4 S ← φ;
5 foreach sequence o in P̂ do
6 R← postfixes for all occurrences of i in o;
7 S ← S ∪R;

8 PrefixSpan(i, i, 1, S, ∆t);

9 Function PrefixSpan(α, iprev , l, S|α, ∆t)
10 L← frequent items in S|α meeting time constraint ∆t;
11 foreach item i in L do
12 if i 6= iprev then
13 α′ ← append i to α;
14 Build S|α′ using full projection;
15 Output α′;
16 PrefixSpan(α′, i, l + 1, S|α′ , ∆t);

pollution database, we mark the timestamps at which the FEPs
occur. One can observe that, the FEPs can effectively capture the
regularly appearing evolvements of PM2.5 in Beijing. Because
of the support threshold and the evolving constraint, infrequent
sudden changes and uninteresting fluctuations are all suppressed.

4.3 Finding Candidate Causers
After discovering the FEPs, next step is leverage them to extract
the candidate causers for each sensor. Consider two sensors s and
s′, let us use TS(s) and TS(s′) to denote the sets of pattern
starting timestamps for s and s′, respectively. Below, we introduce
the pattern match relationship.
Definition 6 (Pattern Match). Let ts′ ∈ TS(s′) be a timestamp at

which a pattern happens on s′. For a pattern starting timestamp
ts ∈ TS(s), we say ts′ matches ts if 0 ≤ ts−ts′ ≤ L, where
L is a pre-specified time lag threshold.
Informally, the pattern match relation states that when there

is a pattern occurring on s′, then within some time interval, there
is another pattern happening on s. Naturally, if s′ has a strong
causal effect on s, then most timestamps in TSs′ will be matched
by TSs, and vice versa. Based on TSs and TSs′ , we proceed
to introduce match precision and match recall to quantify the
correlation between s and s′.
Definition 7 (Match Precision). Given TSs and TSs′ , we define

the matched timestamp set of TSs′ as Ms′ = {ts′ |ts′ ∈
TSs′ ∧ ∃ts ∈ TSs,match(ts, ts′) = True}. With Ms′ and
TSs′ , we define the precision of s′ matching s as:

P (s, s′) = |Ms′ |/|TSs′ |

Definition 8 (Match Recall). Given TSs and TSs′ , we define the
matched timestamp set of TSs as Ms = {ts|ts ∈ TSs ∧
∃ts′ ∈ TSs′ ,match(ts, ts′) = True}. With Ms and TSs,
we define the recall of s′ matching s as:

R(s, s′) = |Ms|/|TSs|
Relying on the concepts of match precision and match recall,

we compute the pattern-based correlation between s and s′ as:

Corr(s, s′) =
2× P (s, s′)

P (s, s′) +R(s, s′)
.

Now we are ready to describe the process of finding candidate
causers for each sensor. Given the set of all sensors and their
pattern-starting timestamps, our goal is to find the candidate
causers for each sensor. Consider a target sensor s, we say another
sensor s′ is a candidate causer for s if s′ satisfies two constraints:
(1) the distance between s and s′ is no larger than a distance
threshold δg; and (2) the pattern correlation between s and s′ is
no less than a correlation threshold δp. Given the pattern-starting
timestamps that are ordered chronologically, the retrieval of the
candidate causers can be easily done by sequentially scanning the
two timestamp lists to find pattern-matched pairs.

Fig. 5 illustrates eight examples of selected candidate causers.
For PM2.5 in Beijing, we reduce the number of candidate sensors
to X = 4 ∼ 7 from overall |S| = 61 sensors in North China.
Note that China is a country with monsoon climate, the candidate
sensors show quite similar geo-locations in four seasons. We
therefore separate the training data into four groups based on
seasons, to better diagnose causalities for the air pollutants in
China.

(a) Spring, Jan~Mar, 2014

(e) Spring, Jan~Mar, 2015 (f) Summer, Apr~Jun, 2015 (g) Autumn, Jul~Sept, 2015 (a) Winter, Oct~Dec, 2015

(b) Summer, Apr~Jun, 2014 (c) Autumn, Jul~Sept, 2014 (d) Winter, Oct~Dec, 2014

Fig. 5. Candidate sensors for Beijing PM2.5 in four seasons. Star: PM2.5
in Beijing. Circles: pollutants at candidate sensors.

5 THE BAYESIAN LEARNING MODULE

In this section we first discuss how the causality learning benefits
from the pattern-matched data extracted by the pattern mining
module. Then we dive into the methodology with the Bayesian
learning module.

Identifying the ST causality (causal pathways) for air pollu-
tants is a problem of learning the causal structures for multiple
variables, which has been well discussed with the graphical causal-
ity [5] based on Bayesian network (BN) [23]. Specifically, BN
encodes the cause-and-effect relations in a directed acyclic graphs
(DAG) via probabilistic dependencies. Learning BN structure from
data is NP-complete [7], in the worst case requiring 2O(n2)

searches among all the possible (DAGs). Thus when the number
of variables becomes very large, the computational complexity
will be unbearable. Therefore, we add the pattern mining module
before the Bayesian learning module to combine the strengths
of both. Pattern mining helps Bayesian learning by reducing the
whole data to the selected candidate sensors and the periods
matched by patterns, which greatly reduce the computational
complexity as well as the noise in causality calculation. However,
since the selected frequent patterns essentially demonstrates the
“correlation”, which is not “causality” [31], the Bayesian learning
module helps represent and learn the causality.

Another benefit of conducting frequent pattern mining before
Bayesian learning is that the selected frequent patterns could re-
flect the meaningful changes of the air pollutants, such as increase,
decrease, sharp increase, sharp decrease, etc, thus significantly
reducing the noises in Bayesian learning. When simply using
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Bayesian learning to identify the causality among different air
pollutants time series, unreliable causal relations may be captured
since there are many fluctuations and long-period low pollution
cases which lead to unexpected correlation between two time
series.

There are two major challenges to learn the causality among
different pollutants in the ST space. The first one is to define a
comprehensive representation of the causal pathways and diagnose
the complex reactions and dispersions of different air pollutants.
For example, the PM2.5 time series in Beijing can be strongly
dependent on the NO2 time series locally, while it can also
be influenced by the PM10 in another city. Therefore, both the
local and ST dependencies need to be fairly considered in the
model. We propose a Gaussian Bayesian network (GBN)-based
graphical model, which captures the dependencies both locally
and in the ST space. We elaborate how to generate initial causal
pathways by GBN in Section 5.1. The second challenge is to
learn faithful causal pathways given different weather conditions.
As the example shown in Fig. 1, there could be different causal
pathways under different wind speeds. We thus propose a method
that integrates the meteorological data in the graphical model via
a hidden factor representing the weather status (Section 5.2). In
this way we can minimize the biases in the learning, and refine the
final causal pathways (Section 5.3).

Here we give an example of combining the pattern mining
module with the Bayesian learning module. Consider there are |S|
monitoring sensors, with each sensor monitoring M categories of
pollutants, there will be |S|×M variables in total for the Bayesian
causal structure learning and the corresponding computational
complexity will be 2O((|S|×M)2). When combining the pattern
mining module, we first extract the FEPs for each pollutant
Pcmsn , i.e., the pollutant of category m ∈ [1,M ] collected at
sensor sn ∈ S . Afterwards, for each target pollutant we select
the pattern-matched periods (the timestamps that patterns at the
neighborhood sensors happen ahead of the target sensor within
some time interval, see Definition 6), as well as its top |X|
candidate causers (the |X| neighborhood sensors that have the
highest pattern-based correlation, see Definition 7 and 8). We
then feed the pattern-matched periods selected and the candidate
causers into the Bayesian learning module. In this way the com-
putational complexity is reduced to O(|X| ×M), and the noises
and fluctuations in the raw data are greatly suppressed.

5.1 Generating Initial Causal Pathways
This subsection first introduces the representation of causal path-
ways in the ST space, and then elaborates how to generate initial
causal pathways.
Definition 9 (Gaussian Bayesian Network (GBN)). GBN is a

special form of Bayesian network for probabilistic inference
with continuous Gaussian variables in a DAG, in which each
variable is assumed as linear function of its parents [32].

As shown in Fig. 6, the ST causal relations of air pollutants
are encoded in a GBN-based graphical model, to represent both
local and ST dependencies. Here we choose GBN to model the
causalities because: 1) GBN provides a simple way to represent
the dependencies among multiple pollutants variables, both locally
and in the ST space. 2) GBN models continuous variables rather
than discrete values. Due to the sensors monitor the concentration
of pollutants per hour, GBN could help better capture the fine-
grained knowledge through the dependencies of these continuous

values. In this subsection, based on the extracted matched patterns
and candidate sensors from the pattern mining module for each
pollutant P̂cmsn , we use Pcmsn to represent continuous values
in the graphical model. 3) The characteristics of urban data fit
the GBN model well. As shown in Fig. 7, the distribution of
1-hour difference (current value minus the value 1-hour ago) of
air pollutants and meteorological data obey Gaussian distribution
(verified by D′Agostino − Pearson test [33] [34]). In the
following sections, normalized 1-hour differences of time series
data will be used as inputs for the model.

(a) Local and ST dependencies in a GBN 

Q(s1~sN)t
ST

= {              }Pcmsn(t-l)

m  in  [1,2,...M];

l   =   1,2,...L;

Qs0t
Local

= {              }Pcms0(t-l)

 n  =   1,2,...,N

(b) Notations 

X1 Pcms0t

L×(N+1)

Qs0t
Local

Q(s1~sN)t
ST

Geospace

Fig. 6. GBN-based causal pathway representation and its notations.
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Fig. 7. Histograms of urban data (original vs. 1-hour difference)

Specifically, for the target pollutant cm at sensor s0-th sensor
and timestamp t, denoted as Pcms0t,m ∈ [1,M], we capture the
dependencies from both the local causal pollutants QLocal

s0t and
the ST causal pollutants QST

(s1∼sN )t. Here QST
(s1∼sN )t refer to a

1× NL vector of pollutants at N neighborhood sensors s1 ∼ sN
and previous L timestamps that most probably cause the target
pollutant in the ST space, i.e.QST

(s1∼sN )t = {Pcmnsn(t−l)},m ∈
[1, . . . ,M];n = 1, . . . ,N; l = 1, . . . ,L. In order to better
trace the most likely “causers” spatially, we just preserve the
one category of pollutant at each neighborhood sensor that most
influences the target pollutant. We use cmn

to represent the
category for the most likely “causers” at sensor n. Similarly,
QLocal

s0t is a 1 × ML vector of pollutants locally at s0. For
example, when we set L = 2,M = 6, QLocal

s0t may take
values of 12 normalized 1-hour difference time series data, i.e.
QLocal

s0t = (2,−0.5, 0.8, 0.3, 1,−2, 2.2, 1, 1, 0,−0.5, 0.2).
The parents of Pcms0t are denoted as PA(Pcms0t) =

QLocal
s0t ⊕ QST

(s1∼sN )t, where ⊕ denotes the concatenation op-
erator for two vectors. Based on the definition of GBN, the dis-
tribution of Pcms0t conditioned on PA(Pcms0t) obeys Gaussian
distribution:
Pr(Pcms0t = pcms0t|PA(Pcms0t)) ∼ N (µcms0t+

ΣN
n=0ΣL

l=1amn(nL+l)(pcmsn(t−l) − µcmsn(t−l)),Σ(εcms0t))
(1)

µcms0t is the marginal mean for Pcms0t. Σ denotes the covari-
ance operator. A = {amn

(nL + l)}, (mn ∈ [1, . . . ,M];n =
0, 1, . . . ,N; l = 1, . . . ,L) is the coefficient for the linear regres-
sion in GBN [32]:

To minimize the uncertainty of Pcms0t given its parents, we
need to find N sensors s1 ∼ sN from the ST space and the
parameters A that minimize the error:

Σ(εcms0t) = Σ(Pcms0t)−AΣ(PA(Pcms0t))
−1AT (2)
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Generating the initial causal pathways requires locating N
most influential sensors from |S| sensors with up to

(|S|
N

)
trials.

Yet given the candidate sensors selected by Section 4.3, we
manage to search from a subset (X ≤ |S|) sensors with time
efficiency and scalability. We further propose a Granger causality
score GCscore to generate initial causal pathways, which is
defined as:

GCscore(m, s0, sn) = maxmn∈[1,M]maxl∈[1,L]

{|match(t(cm,s0), t(cmn ,sn))| ·
|Σ(εcms0(t−l))1| − |Σ(εcms0(t−l))2|

|Σ(εcms0(t−l))2|χ2
L(0.05)

}

(3)
where GCscore is a χ2-test score [21] for the predictive causality,
with higher score indicating more probable “Granger” causes from
M pollutants at sensor sn to the target pollutant cm at sensor
s0 [17] (GCscore ≤ 1 means none causality). For variables
obeying Gaussian distribution, Granger causality is in the same
form as conditional mutual information [20], which has been used
successfully for constructing structures for Bayesian networks.
Here |match(t(cm,s0), t(cmn ,sn))| is the number of matched
timestamps of FEPs between two time series (pollutant cmn

at
sensor sn and pollutant cm at sensor s0, see Section 4.3). And
Σ(εcms0(t−l))1 and Σ(εcms0(t−l))2 correspond to the variances
of the target pollutant Pcms0t conditioned on lagged sequences
QLocal

s0(t−l) and QLocal
s0(t−l) ⊕QST

sn(t−l).

5.2 Integrating Confounders
Recall the example in Fig. 1. A target pollutant is likely to have
several different causal pathways under different environmental
conditions, which indicate the causal pathways we learn may be
biased and may not reflect the real reactions or propagations of
pollutants. To overcome this, it is necessary to model the envi-
ronmental factors (humidity, wind, etc.) as extraneous variables
in the causality model, which simultaneously influence the cause
and effect. For example, when the wind speed is less than 5m/s,
city A’s PM2.5 could be the “cause” of city B’s PM10. However,
when the wind speed is more than 5m/s, there may not be causal
relations between the two pollutants in the two cities. In this
subsection, we will elaborate how to integrate the environmental
factors into the GBN-based graphical model, to minimize the
biases in causality analysis and guarantee the causal pathways are
faithful for the government’s decision making. We first introduce
the definition of confounder and then elaborate the integration.
Definition 10 (Confounder). A confounder is defined as a third

variable that simultaneously correlates with the cause and
effect, e.g. gender K may affect the effect of recovery P
given a medicine Q, as shown in Fig. 8(a). Ignoring the con-
founders will lead to biased causality analysis. To guarantee
an unbiased causal inference, the cause-and-effect is usually
adjusted by averaging all the sub-classification cases of K [5],
i.e. Pr(P |do(Q)) = ΣKk=1Pr(P |Q, k)Pr(k).

For integrating environmental factors as confounders, denoted
asEt = {E(1)

t , E
(2)
t , . . . }, into the GBN-based causal pathways,

one challenge is there can be too many sub-classifications of
environmental statuses. For example, if there are 5 environmental
factors and each factor has 4 statuses, there will exist 45 = 1024
causal pathways for each sub-classification case. Directly inte-
grating Et as confounders to the cause and effect will result in
unreliable causality analysis due to very few sample data con-
ditioned on each sub-classification case. Therefore, we introduce

Q P

K

Cause

 (e.g. medicine)

Effect 

(e.g. recovery)

Confounding 

variable (e.g. 

gender)

X1

(a) Cause-and-effect with confounder

Pcms0t

L×(N+1)×M

Qs0t
Local

Q(s1~sN)t
ST

Qt={...} Pt

K

Environmental 
factors (e.g. 

meteorology)

Geospace

Qt Pt

Markov 
equivalence

K

Et

(b) An illustration of cause-and-effect with confounders (environmental factors) 

integrating into a hidden variable K, for causality analysis

Et={Et, Et, Et, }

Geospace

Qt Pt

K

Et

π 

(c) Learn K labels for Pt, Qt, Et  via 

a generative model  

For each target pollutant cm at sensor s0

(1) (2) (3)

Fig. 8. The GBN-based graphical model, integrating confounders to the
causal pathway, and converting the model into a generative model

a discrete hidden confounding variable K , which determines the
probabilities of different causal pathways fromQt toPt, as shown
in Fig. 8(b). The environmental factors Et are further integrated
into K , where K = 1, 2, ...K. In this ways, the large number of
sub-classification cases of confounders will be greatly reduced to
a small number K, as K clusters of the environmental factors.

Based on Markov equivalence (DAGs which share the same
joint probability distribution [35]), we can reverse the arrow
Et → K to K → Et, as shown in the right part of Fig. 8(b).
K determines the distributions of P,Qt,Et, thus enabling us to
learn the distribution of the graphical model from a generative
process. To help us learn the hidden variable K , the generative
process further introduces a hyper-parameter π (as shown in Fig.
8(c)) that determines the distribution of K . Thus the graphical
model can be understood as a mixture model under K clusters. We
learn the parameters of the graphical model by maximizing the
new log likelihood:

LLgen = ΣtΣ
K
k=1ln(Pr(pt|qt, k)Pr(et|k)Pr(k|π)) (4)

In determining the number of the hidden variableK , we do not
consider too large K values since that will induce much complexity
for causality analysis. Also a too small K may not characterize the
information contained in the confounders (i.e. meteorology). We
observe the 2-D PCA projections of meteorological data (as shown
in Fig. 9). In three regions, five clusters can characterize the data
sufficiently well. Thus we choose K = 3 ∼ 7 for learning in
practice.
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Fig. 9. 2-D PCA projections of 5 clusters of meteorological data in NC,
YRD and PRD. The original meteorological data contains five types,
i.e. temperature (T), pressure (P), humidity (U), wind speed (WS), and
wind direction (WD), with each region divided into 9 grids, thus 45-
dimensional.

5.3 Refining Causal Structures

This subsection tries to refine the causal structures and obtain
the final causal structures under K clusters. The refining process
includes two phases in each iteration: 1) an EM learning (EML)
phase to infer the parameters of the model, and 2) a structure
reconstruction (SR) phase to re-select the top N neighborhood
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sensors based on the newly learnt parameters and GCscore, as
illustrated in Algorithm 2.

EML (line 6-18) is an approximation method to learn the
parameters π, γ,Ak,Bk of the graphical model, by maximizing
the log likelihood (Equation 4) of the observed data sets via an E-
step and a M -step. Here π contains the hyper parameters which
determine the distribution of K (T×K-dimensional). γ are poste-
rior probabilities for each monitoring record (T×K-dimensional).
Ak,Bk are parameters for measuring the dependencies among
pollutants and meteorology (K-dimensional). Note that Ak,Bk

come in different formats. Ak is the regression parameter for:

Pcms0t = µ0 + (QLocal
s0t ⊕QST

(s1∼sN )t)Ak + εcms0t (5)

and Bk = (µBk ,ΣBk) = (mean(Et), std(Et)) includes the
parameters for the multivariate Gaussian distribution of environ-
mental factors Et. In the E-step, we calculate the expectation of
log likelihood (Equation 6) with the current parameters, and the
M -step re-computes the parameters.
E-step: Given the parameters π,K,N,Ak,Bk, EM assumes
the membership probability γtk, i.e., the probability of pt, qt, et
belonging to the k-th cluster as:

γtk = Pr(k|pt, qt, et) =
Pr(k)Pr(pt, qt, et|k)

Pr(pt, qt, et)

=
πtkN (pt|qt,Ak)N (et|Bk)

ΣKj=1πtjN (pt|qt,Aj)N (et|Bj)

(6)

M -step: The membership probability γtk in E-step can be used
to calculate new parameter values πnew,Anew

k ,Bnew
k . We first

determine the most likely assignment tag of timestamp t to cluster
k, i.e.

Tagt = maxk∈[1,K]πtk (7)
By integrating the timestamps belonging to each cluster k, we

can update Anew
k by Equation 5. Then we update Bk by:

µnew
Bk

=
1

Tk
ΣTt=1γtket, Tk = ΣTt=1γtk

Σnew
Bk

=
1

Tk
ΣTt=1γtk(et − µnew

Bk
)(et − µnew

Bk
)T

(8)

In addition, we update πnewtk by:

πnewtk =
γtk
Tk

(9)
The SR phase (line 19-24) utilizes the parameters provided

by the EM learning phase, and re-select the top N neighborhood
sensors based on the newly generated GCscore for each cluster
k. We present a training example (as shown in Fig. 10(a)) of
learning the causal pathways for Beijing PM2.5 during Jan−Mar.
After 20 training iterations of the EM learning phase and structure
reconstruction, we finally obtain K = 4 causal structures under
each cluster, with the log likelihood shown in Fig. 10(b). We find
the log likelihood does not increase much after 10 iterations, thus
we set the iteration number to 10 in our experiments. For the
last iteration, we calculate the percentage of labeled timestamps
belonging to each cluster k. In this example, we find that Beijing’s
PM2.5 is more likely to be influenced by NO2 in Baoding and
PM10 in Cangzhou.

6 EXPERIMENTS

We evaluate the empirical performance of our method in this
section. All the experiments were conducted on a computer with
Intel Core i5 3.3Ghz CPU and 16GB memory. We use MATLAB
for our Bayesian learning module, and the open-source MATLAB
BNT toolbox [36] for baseline methods.

Algorithm 2: Refining the causal structures for each target
pollutant cm at location s0.

Input: T,K,N, and raining data sets pt, qt, et, t ∈ [1,T]
Output: Refined causal structures for K clusters

1 Initial neighborhood sensors s1 ∼ sN based on top N
GCscore;

2 repeat
3 EML(Pt, Qt, Et, s1 ∼ sN , K)

→ Log likelihood, πtk, γtk,Ak,Bk;
4 SR(Ak, s1 ∼ sN , K)→ s′1 ∼ s′N , Q′;
5 until Log likeoihood converges;
6 Function EM Learning(EML)(Pt, Qt, Et, s1 ∼ sN , K)
7 repeat
8 InitialAssign: K clusters via K-means(Et)
9 foreach item t = 1 to T do

10 foreach item k = 1 to K do
11 Update πtk by Equation (9);

12 foreach item k = 1 to K do
13 Update Ak,Bk by Equation (5),(8);

14 foreach item t = 1 to T do
15 foreach item k = 1 to K do
16 Update γtk by Equation (6);

17 until Log likelihood converges;
18 return: Log likelihood and πtk, γtk,Ak,Bk;

19 Function Structure Reconstruction(SR)(Ak, s1 ∼ sN , K)
20 foreach item sn in All candidate sensors do
21 Compute GCscore(m, s0, sn) for s1 ∼ sN ;
22 Rank GCscore and re-select the top N neighborhood

sensors s′1 ∼ s′N ;
23 Update Q→ Q′ corresponding to s′1 ∼ s′N ;

24 return: s′1 ∼ s′N , Q′;

6.1 Experimental Setup
6.1.1 Data Sets
We use three data sets that contain the records of 6 air pollutants
and 5 meteorological measurements:
• North China (NC), with 61 cities, 544 air quality monitoring

sensors and 404 meteorological sensors in North China. The
latitude and longitude ranges are 34N-43N, 110E-123E.
• Yangtze River Delta (YRD), with 49 cities, 330 air quality

monitoring sensors and 48 meteorology sensors. The latitude and
longitude ranges are 28N-35N, 115E-123E, respectively.
• Pearl River Delta (PRD), with 18 cities, 124 air quality

monitoring sensors and 406 meteorology sensors. The latitude and
longitude ranges are 22N-25N, 110E-116E.

The 6 air pollutants are PM2.5, PM10, NO2, CO, O3, SO2, and
the 5 meteorological measurements are temperature (T), pressure
(P), humidity (H), wind speed (WS), and wind direction (WD),
which are updated hourly. The time span for all data sets is
from 01/06/2013 to 31/12/2016. We separate each data set into
four groups based on four seasons, and use the last 15 days
in each season in year 2014, 2015, 2016 for testing, and the
remaining data for model training. The total numbers of training
timestamps are 5424, 6193, 7753, 7752 in the four seasons, respec-
tively, and the number of the corresponding testing timestamps is
15×24×3=1080 in each season. To get the environmental factors
Et for the coupled model, we divide each region into 3× 3 grids
and average the meteorology values within each grid.

We conduct experiments at both city level (Section 6.2.2, 6.2.1,
6.2.5) and sensor level (Section 6.2.3). The city-level experiments
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Fig. 10. An example of learning the causal pathway for PM2.5, Jan−Mar in Beijing under K = 4 clusters.

average value of the sensors in the city to form a pseudo sensor,
and discover the pathways among all the cities in three data
sets. The sensor-level experiments analyze the causal relationships
among sensors in each data set.

6.1.2 Baselines
Since Bayesian-based methods have been well used to learn causal
Bayesian structures [23], we choose the most commonly used BN
structure learning approaches as baselines to compare with our
method. To identify the dependencies among different pollutants,
the baselines are deployed to learn the causal structures for each
target pollutant.
1. MWST. Maximum Weighted Spanning Tree (MWST) gen-
erates an undirected tree structure based on the MWST algo-
rithm [37]. Each time it connects one edge between two nodes with
the maximum mutual information. Furthermore, [38] proposed an
independency test method to assign a direction to each edge in the
tree structure.
2. MCMC. Markov-chain Monte Carlo (MCMC) is a statistical
method that also samples from the Directed Acyclic Graph (DAG)
space [39]. The method maximizes the score from a set of similar
DAGs that add, delete, or reverse connections, and updates the
structure in the next iteration.
3. K2+PS. K2 is a widely used greedy method for Bayesian
structure learning, which selects at most N parents based on the
K2 score [40] for each variable given the updating order of all
the variables. In our case, we use pattern search algorithm [41]
to optimize the updating order, thus reducing the search space
of casual pathways of different pollutants. Note that the original
K2 score is defined for discrete variables. Here we use GCscore
instead for the continuous variables.
4. CGBN. Coupled Gaussian Bayesian network [6] is a data-
driven causality model considering the dependencies between both
the air pollutants and meteorology. CGBN assumes there is a third
variable (confounder, such as gender as a confounder to evaluate
the effect of a medicine on a disease) which simultaneously
influences the dependences among pollutants and among envi-
ronmental factors, coupling pollutants and environmental factors
together. The difference between CGBN and our approach is that
1) our approach integrates the environmental factors directly into
the graphical model, instead of through coupling, and 2) our
approach has a pattern mining module and a refining algorithm
to optimize the learning process.

6.1.3 Parameter Setting
The parameters of pg-Causality include: (1) the support threshold
σ; (2) the temporal constraint ∆t; (3) the distance threshold δg
for finding candidate causers; and (4) the correlation threshold δp
for finding candidate causers; (5) the number of time lags L = 3;
(6) and the number of pollutant categories M = 6. When finding
causal pathways at city level, we set σ = 0.1, ∆t = 1 hour,

δg = 200 km, and δp = 0.5. At the station level, all the the
parameters are set the same except that δg = 15 km to impose
a finger granularity for finding candidate causers. K and N are
evaluated within the range K = 3 ∼ 7, and N= 1 ∼ 5.

6.2 Experimental Results
The verification of causality is a very critical part in causal
modelling. The simplest method for evaluating causal dependence
is to intervene in a system and determine if the model is accurate
under intervention. However, substantial and direct intervention
in air pollution is impossible. By investigating the verification
methods in previous causality works, we propose five tasks to
evaluate the effectiveness of our approach, namely, 1) inference
accuracy for a 1-hour prediction task, 2) time efficiency, 3)
scalability, 4) verification on synthetic data, and 5) visualizing the
causal pathways. Tasks 1-3 target to evaluate whether the model
fits the dependences among the datasets well. Task 4 tries to learn
the causal pathways for a predefined causal structure generated by
synthetic datasets. And Task 5 targets at the interpretability of the
causal pathways we learn.

6.2.1 Inference Accuracy
We first evaluate the effectiveness of our approach via the causal
inference accuracy through the causal pathways at city level,
which is a 1-hour prediction task based on our proposed GBN-
based graphical model. Note this prediction task is not general for
all the timestamps, it only predicts the future 1-hour based on the
extracted pattern-matched periods, indicating the causal inference
for the frequent evolving behaviors. Specifically, we first infer
the probability Pr(k) of the testing data belonging to cluster k.
Then, we use the structure and parameters from the trained causal
pathways regarding this cluster to estimate the future pollutant
concentration by Eq. 10.

P estcms0t = ΣK
k=1(µ0k + PA(Pcms0t)Ak)Pr(k) (10)

The accuracy is defined as ΣTtest
t=1 (P estcms0t − P

∗
cms0t)/Ttest,

where P ∗cms0t is the ground truth value and Ttest is the number
of test cases. TABLE 3 shows the 1-hour prediction accuracy
for PM2.5 and PM10 with our approaches pg-Causality, pg-
Causality-n, pg-Causality-p, and the three baseline methods in
Beijing (Region NC), Shanghai (Region YRD), and Shenzhen
(Region PRD). Here pg-Causality-n represents pg-Causality with-
out the pattern mining module, and pg-Causality-p represents pg-
Causality without integrating confounders. The accuracy shown
in TABLE 3 is the accuracy for spring for three cities. The pg-
Causality gets the highest accuracy (92.5%, 93.78%, 95.39%
for PM2.5 in Beijing, Shanghai, and Shenzhen, respectively;
91.36%, 92.39%, 93.18% for PM10, repectively.), compared to
pg-Causality-n and pg-Causality-p, as well as the three baseline
methods WMST, K2+PS, and CGBN. We did not include the
accuracy of MCMC in TABLE 3 due to its unbearably high
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computational time. The accuracy for MCMC is lower than 60%,
which is not competitive with the other methods mentioned. The
highest inference accuracy for the three cities are marked with
three different colors (orange for Beijing, blue for Shanghai, and
green for Shenzhen) given different parameters K and N. K and N
are obtained based on the maximum inference accuracy for each
city. We note N = 2,K = 4 provides the best performance for
Beijing, while N = 0,K = 5 or 6 generate the best accuracy
for Shanghai and N = 0,K = 1 for Shenzhen. The optimal
number N = 2 for Beijing also suggests that the air pollution is
mainly influenced by the most influential sensors in the ST space.
While the optimal number N = 0 for Shanghai and Shenzhen
suggests that the PM2.5 in these two cities are mainly influenced
by historical pollutants locally.

We also evaluate the 1-hour prediction accuracy with three
well-used time series model, i.e., auto-regression moving average
(ARMA) model, linear regression model (LR), and support vector
machine for regression with a Gaussian radial basis function
(rbf) kernel (represented as SVM-R). Generally, pg-Causality
demonstrates higher inference accuracy compared with these time
series models, except for the PM2.5 in Shanghai.

6.2.2 Time efficiency
We also compare the training time of pg-Causality with baseline
methods, as shown in TABLE 4. Since our approach consists of
both pattern mining and Bayesian learning modules, we present
the averaged time consumption of training all the three data sets,
for each step in the two modules. We also evaluate the overall
time consumption of pg-Causality and pg-Causality-n without
the pattern mining module (Section 5.1 (p+g) refers to the time
cost of causal structure initialization with both pattern mining
and Granger causality score. Section 5.1 (g) refers to only using
Granger causality score). Results show that our approach is very
efficient, with the second minimum computation time among all
the methods. MWST consumes the minimal time, however, it does
not generate satisfactory accuracy for prediction (as in Section
6.2.1). We thus consider our approach provides the best trade-off
regarding accuracy and time efficiency.

TABLE 4
Computation time for training data sets at city level.

Time (s) m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 

Section 4.1 - 4.2 2.74 3.49 3.98 3.74 3.94 3.71 

Section 4.3 29.88 43.28 55.15 39.07 45.44 43.13 

Section 5.1 (p + g) 73.43 111.33 151.63 94.56 136.64 128.47 

Section 5.1 (g) 1125.51 1076.97 1068.13 1074.94 1057.67 1082.85 

Section 5.2 -- -- -- -- -- -- 

Section 5.3 38421.53 42094.47 39137.81 44162.31 49192.68 44601.73 

pg-Causality 38527.58 42252.57 39348.57 44299.68 49378.7 44777.04 

pg-Causality-n 39547.04 43171.44 40205.94 45237.25 50250.35 45684.58 

MWST 6357.9 6529.88 6605.31 7033.58 7216.45 7374.13 

CGBN 72785.54 79165.28 80356.3 75578.74 79623.57 78191.32 

MCMC 524731.63 562835.19 -- -- -- -- 

K2 + PS 286592.52 324851.47 -- -- -- -- 

 

6.2.3 Scalability
Another superior characteristic of our approach is the scalability.
We further identify the causal pathways for air pollutants at sensor
level, which is more than ten times as large as in the city-level
analysis. Our approach provides linear scalability in time with
11.6 hours training time at city level for 128 cities, and 126 hours
at sensor level for 982 stations. We here claim linear scalability
since we did not try to find the optimal causal structure by
searching the DAG space, which is an NP hard problem and in the

worst case requires 2O(n2) searches [7]. In this paper, the causal
pathways we learnt are based on greedy-based approximation.
For the structure learning algorithm, we assume the number of
parameters of the Bayesian-based graphical model to be (#), and
the training iterations to be Niter . For totally N sensors in the
geospace and T timestamps in the training records, the time cost
for the EM learning (EML) phase is O(Niter × (#) × N × T),
assuming every parameter is updated once for every record. In
addition, the time cost for the structure reconstruction (SR) phase
is O(Niter × X × L × N × T + Niter × K × (#) × N × T),
where X is the candidate “causers” selected by pattern mining and
L is the number of time lags. Thus the overall training time is
NiterO(XL + (1 + K)(#))NT. If the number of the graphical
model (#) is fixed, the computation time will approximately be
at linear scalability with the sensor number N and timestamps
number T. We verified the linear scalability in Fig. 11(b)(c). For
the baseline methods, MCMC even cannot compute such large
data sets. CGBN and K2 + PS are unable to compute within
10 days and we leave their time cost as blank, as shown in 11(c).
Meanwhile, the accuracy is guaranteed when extending city-level
data to sensor-level data, as shown in Fig. 11(a).

PM2.5 (128 cities) PM10 (128 cities) PM2.5 (982 stations)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

p
g
-C
a
u
s
a
lit
y

 pg-Causality

 pg-Causality-n

 pg-Causality-p

 MWST

 CGBN

 MCMC

 K2 + PS

Methods pg-Causality pg-Causality-n pg-Causality-p MWST CGBN MCMC K2 + PS

City 1-10 3471.84 4528.67 124.56 65.27 9012.62 682.35 311.74

City 11-60 16075.28 20473.95 427.82 1534.68 48335.01 37289.59 15247.83

City 1-128 42252.57 43171.44 1231.56 6529.88 79165.28 562835.2 324851.5

Sensor 1-982 454513.2 565596.52 14096.87 36751.19 -- -- --

                                        (a) Accuracy                                                              (b) Time cos t vs. number of training timestamps                                              

(c) Training time (seconds) for different numbers of sensors    
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Fig. 11. Accuracy and time efficiency at city and station level.

6.2.4 Verification with Synthetic Data
Since the verification of causality via prediction task may not fully
reflect the cause-and-effect relationships learned by the model, we
further conduct experiments with synthetic data to judge whether
the causality identification is correct or not.

As shown in Fig. 12, we generate N = 20 time series, with
the pre-defined causal structure as in Fig. 12(a). This is done by
randomly choosing the lag k for any edge x → y in the feature
causal graph [22]. To imitate the confounding effect, one time
series is selected to influence all other time series. We reconstruct
the causal structures through Granger causality (as shown in Fig.
12(b)), lasso Granger causality (as shown in Fig. 12(c) [22]),
and pg-Causality (as shown in Fig. 12(d)). To fit pg-Causality in
this “toy” model, we simplified the model by randomly assigning
locations to N time series. In the meanwhile, we set the distance
constraint for selecting candidate “causers” to infinity, in order to
consider every pair of causal relations between N time series. We
mark the incorrect constructed edges in red. Result shows that pg-
Causality generates the most likely structure compared with the
baseline structure.

6.2.5 Case Study
To analyze the causal pathways for air pollutants, we study two
cases corresponding to PM2.5 in specific cities. First we analyze
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TABLE 3
Accuracy of PM2.5/PM10 1-hour prediction vs. baselines, Beijing, Shanghai, and Shenzhen.

Beijing PM2.5, 1-hour prediction accuracy

Shanghai PM2.5, 1-hour prediction accuracy

Shenzhen PM2.5, 1-hour prediction accuracy

Beijing PM10, 1-hour prediction accuracy

Shanghai PM10, 1-hour prediction accuracy

Shenzhen PM10, 1-hour prediction accuracy
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(a) Ground truth (b) Granger causality

(c) Lasso Granger causality (d) pg-Causality

Fig. 12. Causal structures generated by 20 synthetic time series. (a)
Original structure with Node 4 (blue node, surrounded by a circle out-
side) as confounder, (b) Reconstructed by Granger causality, (c) Recon-
structed by Lasso Granger causality, (d) Reconstructed by simplified pg-
Causality. (Since the causa structure reconstructed by Granger causality
in (b) significantly differs from the original one in (a), we only mark the
incorrect connections for Lasso Granger causality and pg-Causality in
red in (c) and (d).)

the causal pathways for PM2.5 in the spring of Beijing and in the
winter of Shanghai, the period of which are considered as the most
heavily polluted season. Then we analyze Beijing PM2.5 before
and during the APEC period (1st − 14th, Nov, 2014) as a case
study for human intervention in causal systems.
1. Beijing and Shanghai. Fig. 10 is a real example for the causal

pathways for Beijing PM2.5 during Jan−Mar. We provide the
probability for each causal pathway for each cluster, defined as the
proportion of labeled timestamps that belong to each cluster. As
shown in Fig. 10(a), Cluster 3 takes a relatively higher proportion
(28.52%) of time for Beijing PM2.5, indicating the causal pathway
during Jan−Mar more probably come from southern sensors, i.e.
Baoding and Cangzhou. Actions can be taken to control these
pollutants in these cities. We then present the causal pathways for
PM2.5 in Shanghai, during Oct−Dec, which statistically has the
highest air pollution concentration. As shown in Fig. 13, for PM2.5
in Shanghai, the N = 3 neighborhood cities generally come from
the northwest and the southwest. Cluster 2 takes a relatively higher
proportion (29.89%) of time for Shanghai PM2.5, suggesting the
pollutants may be dispersed from PM2.5 in Suzhou and Wuxi, and
SO2 in Nantong.

2. Beijing during APEC period. Traditionally, causality is ver-
ified via interventions in a causal system. For example, we can
verify the effect of a medicine by setting two groups of patients
and only giving medicine to the treatment group. However, it is
impossible to conduct intervention for air pollutants in the real
environment. APEC period is a good opportunity to verify the
causality, since the Chinese government shuttered factories in
NC, and implemented traffic bans in and around Beijing [42].
Therefore, we compare the causal pathways for PM2.5 in Beijing
before and during the APEC period. To illustrate the propagation
of pollutants along the causal pathway, we connect the one-hop
pathway to 3-hop as shown in Fig. 14(a)(b). The connection
originates from the target pollutant, i.e., Beijing PM2.5, and
connect its causal pollutants at neighbor cities. Then for each
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new connected pollutant, we repeat the same procedure for the
next hop. The connection stops if in inference accuracy of one
target pollutant based on its historical data is higher than based
on the historical data of its ST “causers”, indicating the pollutant
is more likely to be generated locally. Fig. 14(a) shows Beijing’s
PM2.5 is likely to be caused by NO2 in Baoding (City 14), and
PM10 in Cangzhou (City 18), during Jan − Mar. Further, for
example, Cangzhou’s PM10 is mostly influenced by PM10 in
Dingzhou (City 15) and Binzhou (City 71), as well as PM2.5
in Dezhou (City 64). We list the information of all 128 cities
in Fig. 15, as well as their corresponding optimal K and N for
pollutant PM2.5 in Spring. Note that the causal pathways forms
“circles” in the southwestern cities to Beijing, which is identical
to the locations of the major plants in NC shown in Fig. 14(c).
However, we notice that the causal pathway cannot be connected
into 3-hops during the APEC period, since each “causer” pollutant
to Beijing PM2.5 (i.e. NO2 in Chengde and Zhangjiakou, and
Tianjin) is more likely to be inferred by its own historical data
over its ST “causers” in this period. This may suggest the PM2.5 in
Beijing during the APEC period are mostly affected by pollutants
locally and nearby. The 3-hop causal pathways learnt by three
baselines are quite similar, thus we only present the result learned
by CGBN, pg-Causality-p, pg-Causality-n, MWST, and MCMC
in Fig. 14(d-h). Our approach has better interpretability. It is noted
that without pattern mining module, the candidate “causers” for
Beijing tend to be at irrelevant locations. While without integrating
confounders, the causal pathways tend to have too many paths to
be distinguished. We summarize the discovery for Beijing’s air
pollution as follows.
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Fig. 13. Visualization of final causal pathways for PM2.5 in Shanghai.
• Among all the cities within a region, a target pollutant can

be mainly affected by only several cities in the ST space. The
locations of most influential cities to a target pollutant demonstrate
seasonal similarities.
• The causal pathways for PM2.5 in Beijing may come in

multiple hops that form “circle” in the southwest of Beijing,
suggesting superposition or reaction of air pollutants in the corre-
sponding area. While during the APEC period with low pollution
level, we did not see multi-hop causal pathways, suggesting the
PM2.5 are more likely to be generated locally or nearby within
this period.

7 CONCLUSION

In this paper, we identified the ST causal pathways for air pollu-
tants using large-scale air quality data and meteorological data. We
have proposed a novel causal pathway learning approach named
pg-Causality that tightly combines pattern mining and Bayesian
learning. Specifically, by extending existing sequential pattern
mining techniques, pg-Causality first extracts a set of FEPs for
each sensor, which captures most regularities in the air polluting
process, largely suppresses data noise and reduces the complexity
in the ST space. In the Bayesian learning module, pg-Causality
leverages the pattern-matched data to train a graphical structure,

which carefully models multi-faceted causality and environmen-
tal factors. We performed extensive experiments on three real-
word data sets. Experimental results demonstrate that the causal
pathways detected by pg-Causality are highly interpretable and
meaningful. Moreover, it outperforms baseline methods in both
efficiency and inference accuracy. For future work, we plan to
apply this pattern-aided causality analysis framework for other
tasks in the ST space, such as traffic congestion analysis and
human mobility modelling [43].
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Fig. 14. The causal pathways for Beijing PM2.5 before (a) and during APEC period (b), compared with the locations of major plants in Hebei
Province, China (c), and the causal pathways learned by baseline method CGBN (d), pg-Causality-p (e), pg-Causality-n (f), MWST (g), MCMC (h).

City No. City_Name Latitude Longitude K N Accuracy Region City No. City_Name Latitude Longitude K N Accuracy Region City No. City_Name Latitude Longitude K N Accuracy Region

1 Beijing 39.993 116.413 4 2 0.925 NC 44 Huludao 40.751 120.851 1 1 0.811 NC 87 Yancheng 33.391 120.157 1 1 0.891 YRD

2 Shanghai 31.184 121.456 5 0 0.938 YRD 45 Huhehaote 40.801 111.665 1 0 0.834 NC 88 Xuzhou 34.315 117.359 2 0 0.930 YRD

3 Shenzhen 22.635 114.121 1 0 0.954 PRD 46 Baotou 40.573 110.022 1 0 0.860 NC 89 Huaian 33.582 119.036 4 0 0.912 YRD

4 Ningbo 29.832 121.509 2 0 0.933 YRD 47 Wulanchabu 41.015 113.114 2 1 0.799 NC 90 Lianyungang 34.657 119.258 1 0 0.891 YRD

5 Tianjin 39.156 117.306 1 5 0.931 NC 48 Chifeng 42.210 119.008 1 0 0.869 NC 91 Changzhou 31.787 119.962 5 2 0.916 YRD

6 Guangzhou 23.159 113.377 4 0 0.957 PRD 49 Erduosi 39.813 110.002 6 0 0.786 NC 92 Taizhou 32.367 120.031 2 1 0.939 YRD

7 Hong Kong 22.343 114.163 4 0 0.948 PRD 50 Taiyuan 37.863 112.517 4 1 0.898 NC 93 Suqian 33.956 118.281 2 5 0.916 YRD

8 Shijiazhuang 38.045 114.588 4 3 0.921 NC 51 Datong 40.094 113.303 1 2 0.890 NC 94 Huangshi 30.216 115.055 1 0 0.954 YRD

9 Xinji 37.949 115.224 1 0 0.872 NC 52 Yangquan 37.861 113.566 2 5 0.931 NC 95 Hangzhou 30.076 119.893 3 1 0.936 YRD

10 Tangshan 39.720 118.311 1 4 0.908 NC 53 Jinzhong 37.696 112.734 6 1 0.910 NC 96 Huzhou 30.787 119.951 1 0 0.957 YRD

11 Qinhuangdao 39.955 119.367 6 1 0.887 NC 54 Changzhi 36.190 113.109 1 3 0.940 NC 97 Jiaxing 30.655 120.809 1 0 0.907 YRD

12 Handan 36.568 114.659 2 1 0.937 NC 55 Jincheng 35.498 112.849 4 2 0.838 NC 98 Shaoxing 29.869 120.613 1 5 0.890 YRD

13 Xingtai 37.185 114.879 1 0 0.921 NC 56 Linfen 36.078 111.514 1 0 0.938 NC 99 Taizhou 28.683 121.197 1 0 0.910 YRD

14 Baoding 38.933 115.474 5 0 0.926 NC 57 Yuncheng 35.041 111.015 1 0 0.903 NC 100 Wenzhou 28.061 120.753 1 1 0.916 YRD

15 Dingzhou 38.522 114.997 1 1 0.855 NC 58 Shuozhou 39.344 112.431 3 0 0.790 NC 101 Lishui 28.349 119.704 1 5 0.896 YRD

16 Zhangjiakou 40.787 114.925 2 2 0.846 NC 59 Yizhou 38.443 112.726 1 3 0.859 NC 102 Jinhua 29.160 119.902 5 0 0.896 YRD

17 Chengde 40.974 117.833 2 0 0.861 NC 60 Lvliang 37.522 111.136 1 0 0.863 NC 103 Quzhou 28.942 118.777 2 0 0.901 YRD

18 Cangzhou 38.224 116.688 2 0 0.921 NC 61 Jinan 36.644 117.030 2 5 0.922 NC 104 Zhoushan 30.034 122.238 1 1 0.894 YRD

19 Langfang 39.444 116.694 1 0 0.893 NC 62 Qingdao 36.123 120.384 1 4 0.922 NC 105 Hefei 31.848 117.248 7 0 0.910 YRD

20 Hengshui 37.809 115.800 1 5 0.917 NC 63 Zibo 36.744 118.005 1 0 0.921 NC 106 Bengbu 32.929 117.357 1 5 0.892 YRD

21 Dongguan 23.024 113.762 2 1 0.932 PRD 64 Dezhou 37.459 116.328 1 3 0.886 NC 107 Wuhu 31.366 118.375 1 1 0.896 YRD

22 Foshan 22.988 113.063 2 1 0.933 PRD 65 Yantai 37.511 121.336 1 0 0.902 NC 108 Whuainan 32.655 116.874 6 3 0.880 YRD

23 Heyuan 23.746 114.687 1 0   -- PRD 66 Weifang 36.709 119.124 2 1 0.898 NC 109 Maanshan 31.697 118.525 1 1 0.934 YRD

24 Huizhou 23.012 114.368 1 0 0.935 PRD 67 Jining 35.409 116.622 2 0 0.935 NC 110 Anqing 30.547 117.031 1 0 0.914 YRD

25 Jiangmen 22.516 112.912 5 0 0.894 PRD 68 Taian 36.180 117.122 1 0 0.899 NC 111 Suzhou 33.639 116.971 1 1 0.879 YRD

26 Jieyang 22.593 113.082 4 0 0.861 PRD 69 Linyi 35.053 118.329 1 0 0.919 NC 112 Fuyang 32.881 115.831 1 0 0.883 YRD

27 Qingyuan 23.677 113.042 7 0 0.917 PRD 70 Heze 35.248 115.468 2 0 0.913 NC 113 Bozhou 33.848 115.795 1 1 0.898 YRD

28 Shanwei 22.783 115.371 1 1 0.906 PRD 71 Binzhou 37.374 117.975 2 2 0.882 NC 114 Huangshan 29.903 118.255 3 0 0.804 YRD

29 Shaoguan 24.772 113.593 3 0 0.930 PRD 72 Dongying 37.488 118.614 1 1 0.896 NC 115 Chuzhou 32.300 118.317 1 0 0.883 YRD

30 Yunfu 22.937 112.043 1 0 0.925 PRD 73 Weihai 37.475 122.092 7 1 0.903 NC 116 Huaibei 33.940 116.797 1 0 0.895 YRD

31 Zhaoqing 23.091 112.484 3 1 0.898 PRD 74 Zaozhuang 34.815 117.481 1 1 0.921 NC 117 Tongling 30.936 117.820 1 0 0.889 YRD

32 Zhongshan 22.516 113.392 1 0 0.943 PRD 75 Rizhao 35.393 119.501 1 0 0.888 NC 118 Xuancheng 30.954 118.738 1 0 0.888 YRD

33 Zhuhai 22.285 113.501 1 0 0.922 PRD 76 Laiwu 36.209 117.726 1 1 0.932 NC 119 Liuan 31.762 116.515 3 5 0.907 YRD

34 Nanjing 31.985 118.816 2 2 0.917 YRD 77 Liaocheng 36.457 115.982 2 2 0.922 NC 120 Chizhou 30.652 117.483 1 0 0.831 YRD

35 Suzhou 31.438 120.716 5 0 0.938 YRD 78 Anyang 36.096 114.392 1 0 0.864 NC 121 Nanchang 28.690 115.879 1 5 0.883 YRD

36 Wuxi 31.616 120.209 1 2 0.930 YRD 79 Xinxiang 35.293 113.923 5 3 0.890 NC 122 Jiujiang 29.672 116.002 1 1 0.944 YRD

37 Dalian 38.950 121.628 3 0 0.900 NC 80 Shangqiu 34.417 115.655 1 0 0.883 YRD 123 Shangrao 28.449 117.958 6 0 0.951 YRD

38 Anshan 41.096 122.968 2 2 0.867 NC 81 Jiaozuo 35.223 113.235 1 4 0.917 NC 124 Fuzhou 28.040 116.291 7 0 0.942 YRD

39 Jinzhou 41.059 121.128 1 0 0.804 NC 82 Hebi 35.744 114.301 6 0 0.932 NC 125 Jingdezhen 29.304 117.224 1 0 0.946 YRD

40 Yingkou 40.676 122.222 4 0 0.839 NC 83 Puyang 35.772 115.053 1 3 0.909 NC 126 Yingtan 28.209 117.013 1 0 0.910 YRD

41 Fuxin 42.042 121.685 1 0 0.837 NC 84 Zhenjiang 32.108 119.477 3 2 0.920 YRD 127 Wuzhou 23.462 111.276 2 0 0.941 PRD

42 Chaoyang 41.692 120.461 1 0 0.730 NC 85 Nantong 31.990 120.879 1 2 0.903 YRD 128 Hezhou 24.413 111.544 1 0 0.903 PRD

43 Panjin 41.151 122.032 2 2 0.847 NC 86 Yangzhou 32.537 119.397 5 0 0.938 YRD

Fig. 15. Optimal K and N for 128 cities, in Region NC, YRD and PRD, for PM2.5 during Jan − Mar.
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