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Abstract—This paper develops a constrained expectation max-
imization algorithm (CEM) that improves the accuracy of truth
estimation in unguided social sensing applications. Unguided
social sensing refers to the act of leveraging naturally occurring
observations on social media as “sensor measurements”, when
the sources post at will and not in response to specific sensing
campaigns or surveys. A key challenge in social sensing, in
general, lies in estimating the veracity of reported observations,
when the sources reporting these observations are of unknown
reliability and their observations themselves cannot be readily
verified. This problem is known as fact-finding. Unsupervised
solutions have been proposed to the fact-finding problem that
explore notions of internal data consistency in order to estimate
observation veracity. This paper observes that unguided social
sensing gives rise to a new (and very simple) constraint that
dramatically reduces the space of feasible fact-finding solutions,
hence significantly improving the quality of fact-finding results.
The constraint relies on a simple approximate test of source
independence, applicable to unguided sensing, and incorporates
information about the number of independent sources of an
observation to constrain the posterior estimate of its probability
of correctness. Two different approaches are developed to test the
independence of sources for purposes of applying this constraint,
leading to two flavors of the CEM algorithm, we call CEM and
CEM-Jaccard. We show using both simulation and real data sets
collected from Twitter that by forcing the algorithm to converge
to a solution in which the constraint is satisfied, the quality of
solutions is significantly improved.

Index Terms—social networks, truth discovery, constrained
expectation maximization (CEM), estimation accuracy

I. INTRODUCTION

This paper proposes a constrained expectation maximization
algorithm (CEM) that enhances the quality of truth estimation
(i.e., fact-finding) in unguided social sensing applications. By
unguided social sensing, we refer to the act of leveraging
naturally occuring observations on social media as “sensor
measurements”, when the sources post at will and not in
response to specific sensing campaigns or surveys. This is in
contrast to situations, where participating sources are asked
(e.g., via a crowdsensing phone app or a survey form) to
answer specific questions. The main challenge is to fuse
information from mutltiple sources to get estimates of the
probability of correctness of reported observations [1]. Thus
far, a significant number of fact-finding approaches have been

proposed in various areas, such as fake news discovery on
social media [2]–[4], and crowdsourcing [5]–[7]. We explore
the possibility of improving the solutions by appropriately
constraining the solution space.

It is generally acknowledged, in past literature, that sources
who make truthful observations will usually agree because
truth (in the sense of being a state that matches physical
reality) is unique. On the other hand, multiple versions of
deviation from the truth are possible. For example, if an escape
vehicle used in a given robbery was blue, observers who report
the color incorrectly may erroneously mention any one of a
large variety of other colors. Hence, coincidental agreement
among incorrect observations is less likely. This is true unless
the sources are somehow non-independent; for example, if
one source is copying from another. On social media, such as
Twitter, copying behavior can sometimes be directly detected.
A retweet of an original tweet is, by definition, a copy.
In general, however, copying behavior can occur outside of
retweets as well, and as such needs to be detected separately.
This is challenging because, after all, truthful sources should
be correlated because they report the same truth. Hence,
when the goal is to determine what’s true, how does one
distinguish whether agreement on observations is a sign of
copying behavior or simply an indicator that the observations
are true? This question is at the core of distinguishing truth
from rumors.

In this paper, we observe that in unguided social sensing,
the above distinction can be made with relative ease. Consider
observations shared on social media (such as Twitter), where
individuals are not reporting in response to a targeted crowd-
sensing campaign or a specific survey question, but rather
reporting whatever they choose. This setting offers a different
way of observing non-independence based on an intuition
we call the infinite domain consideration. To understand the
intuition, consider a “take-home” exam, where the instructor
wants to detect whether or not students are copying. Let the
exam have a very large (in the limit, infinite) number of
questions. The students are asked to answer a small finite
number of them, which they can choose at will. If two students
happened to choose to answer a largely overlapping subset of
questions out of the infinite set, it is statistically very likely
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that they have copied from one another, regardless of whether
their answers are in fact correct or not.

Similarly, given all the possible observations that two users
in an unguided social sensing scenario can make on the social
medium (about anything), if they repeatedly choose the same
things to observe, then some copying behavior or a shared
influence is suspected. Unlike what the case might be with
the exam, it is not our objective to penalize copying. Rather,
our objective is to detect evidence of the absence thereof (i.e.,
lack of an appreciable overlap in observations), which would
then suggest independence of the sources in question. If two
or more sources, who are deemed independent by the above
test, agree on an observation, then this particular observation is
very likely to be true. In fact, it is likely true regardless of the
reliability of the sources in question because the probability of
making the same mistake by independent sources is small. This
consideration implies that the probability that an observation
is true can be higher than what’s implied by source reliability
alone.

Interestingly, the mathematical analysis underlying most
current fact-finding frameworks does not account for the
infinite domain consideration, described above. Rather, the
analysis expresses the probability of agreement on an observa-
tion as a function of the reliability of sources and whether the
observation is true or false. This allows the analysis to infer the
latter from the former (often iteratively). However, the analysis
does not consider the equivalent of the “number of questions
on the test” in our illustrative example. We show that by
retrofitting a very simple constraint into the existing maximum
likelihood estimation framework, it is possible to account
for the infinite domain consideration, thereby significantly
improving the results.

In this paper, we develop a novel constrained expectation
maximization (CEM) algorithm to assess the correctness of
the observed data in unguided social sensing. We evaluate
two flavors of the proposed algorithm, called CEM and CEM-
Jaccard, using both synthetic data and real-world datasets col-
lected from Twitter. Evaluation results demonstrate that both
the CEM algorithm and CEM-Jaccard algorithm outperform
the baselines of truth-finders in social sensing, and that CEM-
Jaccard does better in scenarios, where shared biases within
communities increase instances of agreement on the same
incorrect observations.

The rest of the paper is organized as follows. We develop the
constrained expectation maximization method in Section II.
In Section III, we evaluate the estimation accuracy of the
proposed algorithms both using simulations and real-world
datasets. Section IV summaries the related work on truth
discovery. Finally, we conclude the paper in Section V.

II. CONSTRAINED EXPECTATION MAXIMIZATION

Below, we first present general background on expectation
maximization (EM) and constrained expectation maximization
(CEM) algorithms in Section II-A. Section II-B then develops
the mathematical problem formulation for unguided social
sensing, offering two flavors of CEM that differ in the used

constraints. Section II-C summarizes the resulting algorithm.
Finally, Section II-D addresses the challenge with malicious
users. As one might remember from the introduction, our
observation was that, in unguided social sensing, claims are
more likely to be true if made by multiple independent users
than what might be suggested by source reliability alone. This,
however, opens the door for abuse by malicious users who fool
the algorithm into assuming source independence. A solution
that significantly limits user ability to abuse the algorithm is
presented in Section II-D.

A. Background

The general expectation maximization (EM) algorithm [8],
[9] aims to find estimates of some parameter set that maximize
the likelihood of collected observations, when those observa-
tions depend on both the parameter values to be estimated as
well as some latent variables [10]. Given an observed data set
X, latent variables Z, and the unknown parameters θ, a log
maximum likelihood is defined:

L(θ;X) = log
∑
Z

pθ(X,Z)

= log
∑
Z

q(Z|X)
pθ(X,Z)

q(Z|X)

≥
∑
Z

q(Z|X) log
pθ(X,Z)

q(Z|X)
,

(1)

where q(Z|X) is the posterior of latent variables. The expecta-
tion expression on the right-hand side can then be maximized
with respect to values of estimated parameters, as well as
latent variables, leading the standard EM algorithm to iter-
atively implement two steps, called the E-step and M-step, to
estimate the unknown parameters θ and latent variables, Z.
The posterior q(Z|X) in the E-step is determined by pθ(Z|X)
according to KL divergence [10].

Different from the standard EM algorithm, the constrained
expectation maximization (CEM) algorithm directly specifies
some prior information about the posteriors through some
features of the observed data. The posterior q(Z|X) is not
only determined by pθ(Z|X), but also related to the prior
information about some features of the observed data. As
before, the CEM algorithm is divided into two steps: the E-
Step (now with constraint) and the M-Step [11].

• E-step with constraint: This step restricts the posteriors
of latent variables, such that q(Z|X) ∈ Q(X), instead of
restricting pθt(Z|X) directly. Formally,

qt+1(Z|X) = argmin
q(Z|X)∈Q(X)

KL (q(Z|X)||pθt(Z|X)) . (2)

• M-step: This step is used to estimate the unknown param-
eters θ given the posteriors. It remains unchanged from
the original EM algorithm:

argmax
θ

E

[∑
Z

qt+1(Z|X) log pθ(X,Z)

]
. (3)
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Fig. 1. Illustration of sources are connected by social graphs.

B. Unguided Social Sensing

To use this algorithm for fact-finding, assume that a group
of N sources, S = {S1, S2, . . . , SN}, report M assertions.
An assertion here refers to a statement that a source makes
(e.g., a tweet). In general, multiple sources may agree on the
same statement, and multiple statements may be made by the
same source. Let Cj denote a Boolean variable associated with
the jth assertion to indicate whether it is true or not. We say
that Cj = 1, if the assertion is true. Otherwise, Cj = 0, if
it is false. The act of reporting an assertion by a source is
called a claim made by that source. When source Si reports
assertion Cj , we say that SiCj = 1. Otherwise, we say that
SiCj = 0. The elements SiCj can thus be thought of as cells
of a two dimensional (N ×M ) matrix, called the observation
matrix, SC. At the risk of abusing the notation, we denote by
Cj both the statement of the assertion itself, as well as the
Boolean variable denoting its truth value.

On a social medium, such as Twitter, one can also observe
the topology of the underlying social network, such as who is
following whom, or who is retweeting whom. Hence, sources
are connected by a graph, where downstream nodes have a
chance to observe claims made by upstream ones, as shown
in Fig. 1. When source Si is a successor of source Sk, there
exists an edge from Sk to Si. We call sources downstream
from Sk its successors, and call Sk their ancestor. Those with
no incoming edges are roots. We introduce the indicator Dij

to denote whether a certain source Si has ancestors who made
assertion Cj or not. Let Dij = 1 denote that some ancestor
of Si made assertion Cj . Dij = 0 represents that no ancestor
of Si made assertion Cj . We further define D as the two-
dimensional matrix of all such indicators. Hence, if SiCj = 1
and Dij = 1, then source Si may be repeating observation
Cj because an ancestor of theirs made the same assertion.
Figure 1 shows indicators Dij for three sources making two
assertions. In this case, D11 = 0 because source S1 has no
ancestors making assertion C1 = “Tank crushes car full of
bombers before massive explosion at Egypt checkpoint”. On
the other hand, D21 = 1 because source S2 has an ancestor
who makes assertion C1. Also, D32 = 0 because source S3

has no ancestor who makes assertion C2.
Inspired by the approach in [12], we define the following

parameters to be estimated:
• ai = P (SiCj = 1|Cj = 1, Dij = 0): The probability that

source Si reports Cj , given that assertion Cj is true and
no ancestor of Si previously reported the same assertion.

• bi = P (SiCj = 1|Cj = 0, Dij = 0): The probability
that source Si reports Cj when it is in fact false and no
ascestor of Si previously reported the same assertion.

• fi = P (SiCj = 1|Cj = 1, Dij = 1): The probability
that source Si report Cj , given that assertion Cj is true
and some ancestors of Si previously reported the same
assertion.

• gi = P (SiCj = 1|Cj = 0, Dij = 1): The probability of
source Si reports Cj when it is in fact false and some
ancestors of Si previously reported the same assertion.

For our problem of truth discovery, the latent variables are the
set, C = {C1, C2, . . . , CM}, denoting whether the assertions
are true or false. They must be determined based on the
observation matrix, SC, denoting which sources made which
assertions. Let d denote unknown expected ratio of correct
assertions, P (Cj = 1), and θ = [d;∀i : ai, bi, fi, gi] denote
the unknown source parameters we need to estimate. Our goal
is to estimate the unknown parameters θ together with the
truth value of each assertion, C, given the observed data, SC,
and the social graph, D. This paper adopts variations of the
CEM algorithm to solve the truth discovery problem. The log
likelihood function is thus given by:

L = logP (SC;D, θ)

= log

 ∑
C∈{0,1}

P (SC|C;D, θ)P (C;D, θ)

 .
(4)

The E-step becomes:

Q(θ|θt) =
∑

C∈{0,1}

P (C|SC;D, θt)×

log

(
P (SC|C;D, θ)P (C;D, θ)

)
.

(5)

where P (C|SC;D, θt) is the posterior probability of latent
variable C.
Since there exists M assertions in set C, Eq. (5), above, could
be rewritten as:

Q(θ|θt) =
M∑
j=1

∑
Cj∈{0,1}

P (Cj |SCj ;D, θt) log
{
P (Cj ;D, θ)

P (SCj |Cj ;D, θ)
}
,

(6)

where P (Cj |SCj ;D, θt) could be expressed by:

P (Cj |SCj ;D, θt) =
P (SCj |Cj ;D, θt)P (Cj ;D, θ

t)∑
Cj∈{0,1} P (SCj |Cj ;D, θt)P (Cj ;D, θt)

.

(7)
For the above Eq. (7), SCj refers to the jth claim made by
N sources, so we have:

P (SCj |Cj ;D, θt) =
N∏
i=1

P (SiCj |Cj ;D, θt), (8)
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where P (SCj |Cj ;D, θt) is corresponding to the parameters
ai, bi, fi, gi defined above given different Dij and Cj .

We can now hypothesize that, if two sources are indepen-
dent, the likelihood that they make the same false assertion is
very low. The question is: how do we decide that the sources
are independent? In this paper, we propose an answer based on
the consideration mentioned in the introduction. First, trivially,
a source should not be repeating a claim made by one of its
ancestors, since this would not be independent. Second, the
sources in question should not have a history of coinciding
assertions. Let the set of sources that made an assertion Cj
and for whom the above constraints are met be Nj , where
|Nj | = nj .

Consider assertion Cj that represents some statement about
the state of the world. In the simplest case, the state has only
two possible values (one of which must be correct and one of
which is wrong). Let nj independent sources make the same
assertion. Either the sources agreed on this assertion because
it is correct, or they agreed because they accidentally made
the same error. If the sources are guessing randomly, after
the first source guesses, the probability that the rest make
the same error is defined by λnj−1, where 0 < λ < 1.
This probability decreases with nj . As a heuristic, we take
1− λnj−1 to be the probability that sources are not guessing
randomly (but rather agree on a real observation of the truth).
It can be easily seen that this probability will be higher if the
physical state in question had more than two possible values,
because the probability of coincidental agreement will be
even lower. Therefore, when agreement among nj independent
sources occurs, we constrain the probability of correctness
q(Cj |SCj) ≥ 1− λnj−1.

It remains to decide on whether sources are independent.
We consider two versions of the algorithm. In the first (plain
CEM), independence is assumed simply if each pair of sources
in Nj do not have an ancestor/descendant relation. In the
second, we also ensure that they have substantially different
histories of claims. Let SiC and SkC denote the set of past
assertions reported by Si and Sk, respectively. We define:

J(Si, Sk) =
|SiC ∩ SkC|
|SiC ∪ SkC|

. (9)

as a measure of similarity based on the Jaccard distance.
If J(Si, Sk) > threshold, we think of Si and Sk as non-
independent and count them as one source for purposes of
computing nj . Correspondingly, we call this approach CEM-
Jaccard in this paper.

Hence, the E-step for our truth discovery problem is given
by:

qt+1(Cj |SCj) = argmin
q(Cj |SCj)

KL
(
q(Cj |SCj)||P (Cj |SCj ;D, θt)

)
,

s.t., ∀j : 1− λnj−1 ≤ q(Cj |SCj) ≤ 1.
(10)

We call the above constraint, the probability boosting con-
straint, since its main effect is to boost the probability of
correctness of some claims, compared to the unconstrained
version. Specifically, when the posterior probability computed

by the KL divergence is less than the lower bound 1−λnj−1,
it will be boosted to this bound.

Next, the M-step is used to maximize the Q(θ|θt) to
estimate the unknown parameter θ given the posterior of latent
variable qt(Cj |SCj), yielding

θt+1 = argmaxQ(θ|θt). (11)

The optimal estimation of the unknown parameters θ can
be obtained through multiple iterations of the derivative
∂Q(θ|θt)

ai
= 0, ∂Q(θ|θt)

bi
= 0, ∂Q(θ|θt)

fi
= 0, ∂Q(θ|θt)

gi
=

0, ∂Q(θ|θt)
d = 0. So we can have

at+1
i =

∑
Cj∈SiC

D0
j =1

qt(Cj |SCj)∑
Cj∈SiC

D0
j

qt(Cj |SCj)
, (12a)

bt+1
i =

∑
Cj∈SiC

D0
j =1

(
1− qt(Cj |SCj)

)
∑
Cj∈SiC

D0
j

(1− qt(Cj |SCj))
, (12b)

f t+1
i =

∑
Cj∈SiC

D1
j =1

qt(Cj |SCj)∑
Cj∈SiC

D1
j

qt(Cj |SCj)
, (12c)

gt+1
i =

∑
Cj∈SiC

D1
j =1

(
1− qt(Cj |SCj)

)
∑
Cj∈SiC

D1
j

(1− qt(Cj |SCj))
, (12d)

dt+1 =

∑M
j=1 q

t(Cj |SCj)
M

, (12e)

where SiC
D0
j = {SiCj : ∀SiCj ∈ SC&Dij = 0}; and

SiC
D1
j = {SiCj : ∀SiCj ∈ SC&Dij = 1}. M is the total

number of assertions reported by sources.

C. Algorithm

In this subsection, we summarize the CEM algorithm and
the CEM-Jaccard algorithm for truth discovery problem above.

In Algorithm 1, we first compute the posteriors of latent
variables through the E-step and then calculate the unknown
parameters in the M-step using the maximum likelihood
method. Lines 6 and 7 apply the probability boosting con-
straint. After the parameters converge, we classify the asser-
tions based on its estimated truth values. If the truth value
of an assertion is equal or greater than 0.5, the assertion is
evaluated to be true, Ĉj = 1; otherwise it is evaluated to be
false, Ĉj = 0. Note that, the difference between CEM and
CEM-Jaccard is in how nj is computed. In CEM nj denotes
the number of sources who made the same assertion, Cj , who
do not have an ancestor/descendant relation. In CEM-Jaccard,
it is the number of sources who meet the above condition and
also do not have a significant overlap in past tweets, according
to the Jaccard distance as expressed in Equation (9).

D. Malicious Users

In the above discussion, we have not considered malicious
users who purposely try to subvert the algorithm by posting
assertions in a way that falsely increases their credibility. In
general, this problem has no solution. A source can always
engender trust by posting a number of claims that are true
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Algorithm 1 CEM/CEM-Jaccard algorithm for Truth Finding.
1: Input: initialize θ with random probability, nj
2: Output: Classification results: Ĉj , θ
3: while θt does not converge do
4: for j = 1 :M do
5: Compute posterior qt+1(Cj |SCj) based on Eq. (10)
6: if qt+1(Cj |SCj) < 1− λnj−1 then
7: qt+1(Cj |SCj) = 1− λnj−1

8: else
9: qt+1(Cj |SCj) = P (Cj |SCj ; θt)

10: end for
11: for i = 1 : N do
12: Compute at+1

i , bt+1
i , f t+1

i , gt+1
i , dt+1 based on

Eq. (12)
13: end for
14: Update θt+1 = θt

15: t = t+ 1
16: end while
17: for j = 1 :M do
18: if qt(Cj |SCj) ≥ 0.5 then
19: Ĉj = 1 (true)
20: else
21: Ĉj = 0 (false)
22: end for
23: Return classification results Ĉj

so its estimated reliability increases then positing a lie that
would be considered reliable truth. However, the approaches
for assessing source independence, described in this paper,
introduce a new vulnerability. Namely, two or more sources
with no ancestor/descendant relation in the social network
graph can now agree to post the same claim. This may
cause CEM to consider this claim correct because the new
constraint will regard the probability of coincidental agreement
among the independent sources unlikely. CEM-Jaccard can
be fooled as well if the sources also fabricate a number
of additional claims that are different, so that the Jaccard
similarity score between their claim histories is lowered to
where they are considered independent. To avoid significant
degradation because of these problems, we simply limit the
use of the new constraint. That’s to say, we limit a single
source to be a beneficiary of the constraint at most W times
per a certain interval of time. Hence, when enforcement of the
constraint boosts the correctness probability of a claim made
by nj sources (that are deemed independent by our algorithm),
we increment a per-source counter. Once the counter of some
source reaches W , no other claims of that source are subjected
to the (probability boosting) constraint for the remainder of the
current window. Setting W involves a trade-off. A value that
is too small will essentially mean that the new constraint is
not sufficiently exercised, which reduces the benefit from the
new approach. On the other hand, a value that is too large
allows frequent misuse.

This is not unlike the rationale for limiting ATM with-
drawals to some maximum amount per defined period (e.g., per
day). While the bank cannot prevent someone from stealing a
debit card, they can limit the damage by limiting the benefit re-
ceived from unauthorized use of the card. As with the choice of

W , a balance must be maintained between allowing legitimate
users to benefit from their debit cards and limiting the damage
caused by unauthorized transactions. Our evaluation results on
Twitter show that setting W to (approximately) once every 36
hours offers a good compromise between performance benefits
and risk. A node will be able to use/abuse the constraint less
than once a day, which limits damage. At the same time, the
evaluation shows, most of the benefit is achieved.

III. PERFORMANCE EVALUATION

In this section, we carry out extensive experiments to
evaluate the performance of the proposed CEM algorithm
and CEM-Jaccard algorithm for truth discovery using both
synthetic data and real-world datasets collected from Twitter.
In addition, we explore limiting the number of times the
probability boosting constraint can be used in a given time
window for each source to impede malicious sources.

A. Simulation

In this subsection, we use simulations to evaluate the
estimation accuracy of the proposed CEM algorithm, CEM-
Jaccard algorithm, and the baselines below.
• CEM: Our proposed algorithm in this paper. It incor-

porates prior information on the number of independent
sources, derived from the topology of the social graph,
to constrain the probability of latent variables.

• CEM-Jaccard: Another proposed algorithm in this paper.
It computes the number of independent sources, nj , not
only based on the topology of the social graph, but also,
in part, based on the Jaccard distance between claim
histories of sources.

• EM-social: This algorithm was proposed in
IPSN’14 [13]. It uses the general (unconstrained)
EM algorithm to estimate the truth values of assertions
given the social graph.

• EM-regular: This algorithm was proposed in
IPSN’12 [13] and uses the general EM algorithm to
assess the correctness of assertions, without considering
the social graph (i.e., it assumes that all sources are
independent).

• Voting: This method is a naive method that estimates
veracity of assertions based on the number of sources
who claimed them.

To generate synthetic data, we consider a situation where N
sources are connected by a heavy-tailed social graph [14] and
together make a total of M different assertions. For each
assertion, the ground truth validity is determined by flipping a
weighted coin, so that it is true with probability Pt. Nodes in
the social graph pick assertions to report, such that they report
“true assertions” with probability pindTi and “false assertions”
with probability pindFi , respectively. These values, therefore,
determine the predisposition of nodes for making true and false
statements, respectively. Their children then have a probability
pdepTi to follow their ancestors in reporting a true assertion and
probability pdepFi to follow their ancestors in reporting a false
assertion. These probabilities thus simulate gossiping behavior.
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Fig. 2. Comparison of Estimation Accuracy for various algorithm

In addition, we use rT as the probability that a true assertion
is reported by additional sources with no ancestor/descendant
relation and rF as the probability that a false assertion is
reported by additional sources with no ancestor/descendant
relation. The former simulates multiple independent observa-
tions of the truth, whereas the latter simulates impact of bias,
where multiple nodes originate the same false information out
of a shared incorrect belief.

In our simulation, to compare the estimation accuracy of our
proposed CEM algorithm with the baselines, we choose simu-
lation parameters based on real-world datasets collected from
Twitter. In general, we find the parameters rT ∈ [0.4, 0.75] and
rF ∈ [0.1, 0.3] in real-world datasets. We also find that about
65% to 85% of all assertions are true. So we set up rT = 0.65,
rF = 0.15 and Pt = 0.7. In addition, we take N = 100,M =
80, and threshold = 0.5 as the default values, except where
mentioned otherwise in the experiments. We set up parameter
λ = 0.5 as it is one of the optimal choices for our experiments.
Since the source-claim matrices are sparse in the real-world
datasets, we set up the following parameters to emulate similar
SC matrices. For a true assertion, reliable sources with no
ancestor/descendant relation report it with pindTi ∈ [0.1, 0.5]
while unreliable sources with no ancestor/descendant relation
report it with pindTi ∈ [0.01, 0.05]. Their children would
follow them with pdepTi ∈ [0.7, 0.9]. For a false assertion,
it has rF probability to be reported by multiple sources with
no ancestor/descendant relation. These sources make the same
assertions with pindFi ∈ [0.8, 0.9]. In addition, the reliable
sources with no ancestor/descendant relation reports it with
probability pindFi ∈ [0.005, 0.01]. Their children would follow
the corresponding ancestors with pdepFi ∈ [0.7, 0.9].

In the first experiment, we evaluate the estimation accuracy
of various approaches given a different number of sources
N and a different number of assertions M , respectively. Our
results are obtained by averaging over 50 instantiations of the
source claim matrices. The simulation results are illustrated in
Fig. 2.

Fig. 2(a) shows the comparison of the estimation accuracy
for different methods as the number of sources, N , varies
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Fig. 3. rF of false assertions reported by multiple root sources.

from 80 to 160. From this figure, we can observe that the
estimation accuracy of the CEM-Jaccard is higher than the
CEM algorithm. This is because the CEM-Jaccard algorithm
checks for the non-independent sources who have substantial
histories of claims that they make together. In addition, both
CEM algorithm and CEM-Jaccard algorithm outperform the
baselines. We can also observe from Fig. 2(a) that the different
algorithms seem fairly invariant to changes in the number of
sources.

Fig. 2(b) compares the estimation accuracy of the above
different algorithms for different numbers of assertions. We
change M from 60 to 100 with the other parameters kept
unchanged. We can observe that both the CEM algorithm
and the CEM-Jaccard algorithm outperform the baselines.
Likewise, we can observe that the estimation accuracy of the
CEM-Jaccard algorithm is a little higher than the CEM.

Next, we explore the effect of bias. Bias in a community
affects the probability of reporting false assertions by multiple
sources that are not necessarily connected by a social graph
and hence will be deemed independent by CEM. Since bi-
ased sources agree on views, they will often post the same
assertions. To explore this effect, we change the probability,
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Fig. 4. rT of true assertions reported by multiple root sources.

rF , from 0 to 1, while keeping other parameters unchanged.
Fig. 3 illustrates that the estimation accuracy of the proposed
CEM method will drop with the increase of false assertions
reported by multiple sources. But the CEM-Jaccard algorithm
still has a higher estimation accuracy than the baselines. This is
because the original CEM algorithm constrains the probability
to be true just based on ancestor/descendant relation. However,
the CEM-Jaccard algorithm checks claim history to assess
independence. If sources often coincide in their posted claims,
they are no longer deemed independent, and the probability
boosting constraint is not used. In addition, when rF = 0, the
CEM-algorithm has a little higher estimation accuracy than the
CEM-Jaccard, since the CEM-Jaccard may occasionally fail to
recognize source independence based on history similarity that
is accidental. Based on the evaluation results, we can conclude
that the CEM-Jaccard is more robust than the CEM algorithm,
especially in the presence of biased communities of sources.

In Fig. 4, we compare the estimation accuracy of various
methods for different probabilities of true assertions reported
by multiple sources with no ancestor/descendant relation. Let
the probability rT vary from 0 to 1. From Fig. 4, we can
observe that the CEM and CEM-Jaccard algorithms beat the
baselines as rT varies from 0.2 to 1. When rT is less than 0.2,
the estimation accuracy of CEM is a little lower than the EM-
social since some false assertions (rF = 0.15) are enforced
with constraints. In addition, the estimation accuracy for the
EM algorithms gradually increases with rT . The reason is that
they can better exploit corroboration by independent sources.
Similarly, we can see the estimation accuracy of the CEM
algorithm is a little lower than the CEM-Jaccard method.

B. Empirical Evaluation

In this subsection, we evaluate the performance of the
proposed CEM algorithm and CEM-Jaccard algorithm on real-
world datasets collected from Twitter.

We collect the real-world datasets from Twitter through
their search API that allows one to collect tweets that match
keywords. In this study, we collect two real-world data traces
related to the Mosul battle of ISIS in Iraq in 2017 and Presi-
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Fig. 5. Comparison of accuracy for different algorithms (Mosul dataset).

dential Campaign of Donald Trump in 2016 from Twitter. In
order to reduce the data sparsity of claims made by various
sources, we extract sources that make at least two tweets
during the observation period, and use only those sources
and their tweets. In our experiments, human graders labelled
the ground truth of each assertion (tweet) by investigating the
events in question after the fact. Graders mark the assertions
as “True”, “False” or “Opinion” based on the following rule:
• True: Tweets describe physical events that have been

verified as true by the grader.
• False: Tweets describing events that are false, according

to the grader.
• Opinion: Subjective comments made by sources like “I

love Super Bowl of this year” and “Lady Gaga should
not be invited to Super Bowl”.

The estimation accuracy is defined as the ratio of true tweets
to the total tweets that a particular algorithm believed (i.e.,
deemed true): #True/(#False + #True + #Opinion).

Next, we implement the different algorithms and baselines
to evaluate accuracy based on the two real-world datasets
above. For the first empirical experiment, we use the real-
world dataset, Mosul battle of ISIS in Iraq. Due to grading time
limitations, we grade only the most popular 130 assertions.
Fig. 5 compares the estimation accuracy for the different
methods for the following three scenarios:
• Original dataset: The real-world dataset from Twitter.
• Biased: 15%: 15% of false assertions from the 130

grades assertions in the real-world dataset are artificially
replicated so that they are reported by multiple sources
with no ancestor/descendant relation.

• Biased:15% + Malicious:5%: We artificially add mali-
cious sources to report 5% of false assertions in the
real-world dataset as well. Unlike simply biased sources,
malicious sources actively try to fool our algorithm.
Hence, they come in groups of 2 or more. Each group
makes one common (false) assertion, then each source in
the group makes 5 random other assertions in order to
fool Jaccard.

From this figure, we can see that the CEM and CEM-Jaccard
have higher estimation accuracy than the baselines for the
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Fig. 6. Comparison of accuracy for different algorithms (Trump dataset).

original dataset. This is because about 28% of true assertions
reported by multiple sources with no ancestor/descendant
relation are enforced with constraints. Note that, in the absence
of biased or malicious sources, the estimation accuracy of
the CEM-Jaccard is little lower than the CEM, because it
removes some constraints unnecessarily when truly indepen-
dent sources coincidentally make several similar claims. In
addition, we can see from Fig. 5 that the estimation accuracy
of the CEM seems worse than EM-social for Biased: 15%, but
the CEM-Jaccard algorithm has a higher estimation accuracy
than both. Finally, as multiple malicious sources report false
assertions to fool the CEM-Jacard, the estimation accuracy
of all methods is decreased in Biased:15% + Malicious:5%.
Again, CEM-Jaccard does better than the rest.

In the second experiment, the real-world dataset Presidential
Campaign of Donald Trump is used to compare the estimation
performance of different algorithms. We choose 390 assertions
as the input of the different algorithms and then choose the 70
most popular assertions to compare their estimation accuracy
for the three scenarios as above. As shown in Fig. 6, we
can see that the proposed CEM algorithm and the CEM-
Jaccard algorithm outperform the baselines for the original
dataset. When the ratio of false assertions reported by multiple
(biased) sources increases, the estimation accuracy of the CEM
algorithm is decreased, whereas CEM-Jaccard is more robust.
Finally, we can see the estimation accuracy of the proposed
algorithms will be reduced when malicious sources are present.
CEM-Jaccard still does the best in this case.

Based on the above evaluation, we conclude that the pro-
posed CEM and CEM-Jaccard methods can achieve better
estimation accuracy than the baselines and that CEM-Jaccard
is more robust than the CEM algorithm with respect to source
bias that results in agreement on many claims by nodes without
an actual ancestor/descendant relation in the social graph.

C. Limit of use of constraints

In this subsection, we use the two real-world datasets above
to explore how to limit the use of constraints per time interval
to impede malicious sources.
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Fig. 7. Limit use of constraints for each source (Mosul dataset).
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Fig. 8. Limit use of constraints for each source (Trump dataset).

As discussed in Section II-D, the proposed CEM algorithm
is vulnerable to abuse by malicious sources who may fool
it to regard them as independent and hence boost the prob-
ability of correctness of claims they agree on. To avoid the
resulting degradation in estimation accuracy, we limit the use
of constraints for each source. We change the limit for each
source from 0 to ∞, applied over a three day window. The
evaluation results are as shown in Fig. 7. Note that, when the
limit is 0, no constraints are used and the algorithm defaults
to EM social. In contrast, when the limit = ∞, constraints
are used whenever the algorithm decides that the sources are
independent. From Fig. 7, we can see that the estimation
accuracy of the CEM and CEM-Jaccard algorithms is higher
when limit = 2 than the EM-social. Their estimation accuracy
is then decreased when increasing the use of constraints. Also,
the Trump dataset has similar results to the Mosul dataset as
illustrated in Fig. 8. Thus, limiting the use of constraints for
each source to at most two times within a three day interval
is best for our data sets. In general the problem of proper
limiting deserves further investigation, and will be a topic of
expansion for a journal version of this paper.

IV. RELATED WORK

In recent years, much attention was paid to truth discovery
from social media. Yin et al [15] developed a TruthFinder that
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uses heuristic methods to iteratively estimate the correctness
of conflicting data from different websites. Wang et al. [2]
proposed an expectation maximization (EM) algorithm to
evaluate the correctness of observations in socal sensing.
Wang et al. [13] later introduced a source depency model
that improved the estimation of reliability of sources and the
veracity of assertions by accountind for correlated errors (i.e.,
rumors) that spread along source dependency chains.

Other researches derived error bounds on reliability. Xiao et
al. [16] incorporated source bias into a randomized Gaussian
mixture model and built a maximum likelihood estimate
(MLE) model for truth discovery. They further derived the
theoretical error bounds for population-based and sample-
based MLE. However, they assumed that the sources are
independent and one will not influence another. Yao et al. [12]
derived a fusion error bound given a source dependency model
to improve the quality of truth discovery. They calculated the
expectation of estimation error and compared several source
dependency models.

Some researchers also used supervised learning for truth
discovery in social networks. For instance, Castillo et al. [17]
assessed the credibility of news on Twitter based on different
features from tweets. In reality, we may use deep learning [18]
to improve estimation accuracy from various features. How-
ever, the drawback of supervised learning is that a lot of data
should be labelled.

In addition, some researchers take physical locations into
account to detect local events with the help of geo-tags [19],
[20]. However, it is often difficult to obtain the real locations
of users due to users’ privacy protections on social media.

This paper adopted a constrained maximum likelihood es-
timator to improve the ground truth estimation accuracy in
social sensing.

V. CONCLUSIONS

This paper developed a novel constrained expectation max-
imization (CEM) algorithm to improve the accuracy of truth
estimation in unguided social sensing. This algorithm in-
corporates a constraint that boosts the probability of claim
correctness as a function of the number of independent sources
making the claim. Different from prior EM algorithms, we for-
mulated the E-step as a constrained optimization problem. Two
different approaches were proposed to test the independence of
sources for purposes of applying this constraint, leading to two
flavors of the CEM algorithm, called CEM and CEM-Jaccard.
Finally, we evaluated the performance of the CEM and CEM-
Jaccard algorithms using both synthetic data and real-world
datasets from Twitter. The evaluation results demonstrated that
forcing the algorithm to converge to a solution in which the
constraint is satisfied, the quality of solutions is significantly
improved. In addition, the CEM-Jaccard algorithm is more
robust than the CEM algorithm.
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