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The real-time discovery of local events (e.g., protests, disasters) has been widely recognized as a fundamental
socioeconomic task. Recent studies have demonstrated that the geo-tagged tweet stream serves as an unprece-
dentedly valuable source for local event detection. Nevertheless, how to e�ectively extract local events from
massive geo-tagged tweet streams in real time remains challenging. To bridge the gap, we propose a method for
e�ective and real-time local event detection from geo-tagged tweet streams. Our method, named GeoBurst+,
�rst leverages a novel cross-modal authority measure to identify several pivots in the query window. Such
pivots reveal di�erent geo-topical activities and naturally attract similar tweets to form candidate events.
GeoBurst+ further summarizes the continuous stream and compares the candidates against the historical
summaries to pinpoint truly interesting local events. Better still, as the query window shifts, GeoBurst+ is
capable of updating the event list with little time cost, thus achieving continuous monitoring of the stream.
We used crowdsourcing to evaluate GeoBurst+ on two million-scale data sets, and found it signi�cantly more
e�ective than existing methods while being orders of magnitude faster.
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1 INTRODUCTION

1.1 Motivation

A local event (e.g., protest, crime, disaster, sport game) is an unusual activity bursted in a local
area and within speci�c duration while engaging a considerable number of participants. The
real-time discovery of local events has been recognized as an important task for a wide spectrum
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of applications. Consider disaster control as an example. By detecting emergent disasters (e.g.,
earthquakes, �res) in real time, we can send alarms to the populace at the very �rst moment when
these disasters outbreak. Such real-time alarms are expected to be much faster than traditional
reports [8], [29], [45] and thus allow for timely response to avoid huge life and economic losses. As
another example, with an intelligent detector that continuously extracts interesting local events, it
is feasible to achieve e�ective personalized activity recommendation in the urban space. Suppose a
user is interested in sport games and music festivals, the detector can easily identify related events
with a few �ltering keywords, and continuously feed the user with events-of-interest.

While the real-time detection of local events was nearly impossible years ago due to the lack
of reliable data sources, the explosive growth of geo-tagged tweet data brings new opportunities
to it. With the ubiquitous connectivity of wireless networks and the wide proliferation of mobile
devices, more than 10 million geo-tagged tweets are created in the Twitterverse every day. Each
geo-tagged tweet, which contains a text message, a timestamp, and a geo-location, provides a
uni�ed 3W (what-when-where) view of the user’s activity. For example, when the tragic 2011 Tohoku
Earthquake hit Japan on March 11th 2011, thousands of related geo-tagged tweets were created
instantly; and when the Baltimore Riot took place in April 2015, many people posted geo-tagged
tweets to broadcast it right on the spot. Its sheer size, multi-faceted information, and real-time
nature make the geo-tagged tweet stream an unprecedentedly valuable source for detecting local
events.

1.2 Challenges

Our goal is to achieve real-time and e�ective local event detection from geo-tagged tweet streams.
The challenge of this problem is three-fold:

• Integrating diverse types of data. The geo-tagged tweet stream involves three di�erent data
types: location, time, and text. Considering the totally di�erent representations of those
data types and the complicated cross-modal interactions among them, how to e�ectively
integrate them for local event detection is challenging.

• Capturing the semantics of short text. Since every tweet is limited to 140 characters, the
semantics of the user’s activity is expressed through short and sparse text messages. Com-
pared with traditional documents (e.g., news), it is much more di�cult to capture the
semantics of short tweet messages and extract high-quality local events.

• On-line and real-time detection. When a local event outbreaks, it is key to report the event
instantly to allow for timely actions. As massive geo-tagged tweets stream in, the detector
should work in an on-line and real-time manner instead of a batch-wise and ine�cient one.
Such a requirement is the third challenge of our problem.

Recently, there has been increasing interest in leveraging social media for modeling people’s
spatiotemporal activities in the physical world, addressing tasks like event detection [1, 3, 6, 13,
14, 19, 21, 33], geographical topic discovery [9, 17, 18, 31, 39], and mobility modeling [36, 37, 40].
Among them, [3, 14, 21, 33] are very related to our problem as they also aim to extract interesting
events on Twitter, but they are all designed to detect global events instead of local events. Unlike
global events that are bursty in the entire stream, local events are “bursty” in a small geographical
region and involve much fewer tweets. Such local bursts cannot be readily captured by global
event detection methods. A few methods tailored for local event detection [1, 6, 13, 19] have been
introduced. Nevertheless, most of them process the geo-tagged tweet data in a batch manner, and
none of them can support real-time local event detection from geo-tagged tweet streams.
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1.3 Contributions

We propose an e�ective and real-time local event detector called GeoBurst+. Our insight behind
the design of GeoBurst+ is that, as a local event outbreaks, there are usually a considerable number
of geo-tagged tweets around the occurring place (e.g., many participants of a protest may post
tweets on the spot). As such tweets are geographically close and semantically coherent, they form
a geo-topical cluster and serve as a potential local event. However, not necessarily does every
geo-topical cluster correspond to a local event. First, the cluster may not be spatiotemporally unusual.
A geo-topical cluster could be just a routine regional activity (e.g., many shopping-related tweets
are posted on the Fifth Avenue in New York every day), or geographically scattered discussions
(e.g., a popular TV show may result in several geo-topic clusters in di�erent regions). Second, the
cluster may not be spatiotemporally bursty. A cluster that contains a limited number of tweets may
be just random babbles from users instead of interesting local events. Therefore, we claim that a
geo-topical cluster should be spatiotemporally unusual and bursty to form a local event, and it is
necessary to carefully judge each candidate to pinpoint true local events.

Motivated by the above, GeoBurst+ �rst �nds all geo-topical clusters in the query window based
on a novel authority measure. The measure quanti�es a tweet’s geo-topical authority by combining
the geographical and semantic contributions from its similar tweets, where the geographical side is
captured with a kernel function, and the semantic side is captured with random walk on a keyword
co-occurrence graph. With the authority measure, we design an authority ascent procedure to
identify all pivot tweets, which are essentially authority maxima in the geo-topical space. Such
pivots re�ect di�erent representative activities in the query window and naturally attract similar
tweets to form geo-topical clusters as candidate events.

To judge whether each candidate is indeed an interesting local event, GeoBurst+ consists of a
summarization module that summarizes the continuous geo-tagged tweet stream. The obtained
summaries not only encode the typical activities in di�erent geographical regions, but also captures
the subtle semantics of di�erent keywords and tweets by embedding them into a latent space.
Relying upon the summaries, we compare each candidate event against the routine activities to
extract a set of discriminative features, which allow us to train a classi�er to accurately determine
whether each candidate is a true local event.

Better still, as the query window shifts, GeoBurst+ does not need to extract new local events
from scratch. Instead, it features an updating module that updates the event list continuously as new
geo-tagged tweets stream in. The updating incurs little time cost because authority computation,
which is the most time-consuming operation in GeoBurst+, can be completed by subtracting the
contributions of the outdated tweets and emphasizing the contributions of the new ones. Such
an updating module enables e�ective monitoring of the tweet stream to report local events in a
real-time and continuous manner.

The major contributions of this work are summarized as follows:

(1) We design GeoBurst+ for local event detection in geo-tagged tweet streams. The e�ec-
tiveness of GeoBurst+ is underpinned by a novel cross-modal authority measure that
generates candidate events, along with a module that summarizes the continuous tweet
stream to accurately pinpoint true local events.

(2) With the additive property of the authority score, we design an updating module for
GeoBurst+. It fast updates the event list when the query window shifts, and thus enables
real-time and continuous local event detection. To the best of our knowledge, GeoBurst+
is the �rst method that can achieve real-time local event detection from geo-tagged tweet
streams.
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(3) We performed extensive experiments on millions of geo-tagged tweets in two di�erent
cities, and evaluated the results using a crowdsourcing platform. Our results demonstrate
that GeoBurst+ signi�cantly outperforms state-of-the-art methods in e�ectiveness, and
runs orders of magnitude faster.

A preliminary version of GeoBurst+ has been presented in [41]. Compared with the preliminary
version, our GeoBurst+ method employs a new supervised framework for selecting the true local
events, while the previous GeoBurst method ranks all the candidates and selects the top-K bursty
ones. In addition, GeoBurst+ performs keyword embedding to capture the subtle semantics of
tweet messages, which is also a new component. The major advantage of the GeoBurst+ method
over its preliminary version is two-fold: (1) It frees us from manually designing ranking functions
and removes the in�exibility of rigid top-K selection for every query window; and (2) It can easily
incorporate other signals (e.g., embedding-based features) that can help characterize true local events
to achiever better e�ectiveness. Our experiments verify that both the supervised framework and
the keyword embedding technique are useful in improving the detection e�ectiveness considerably.

2 PRELIMINARIES

In this section, we formulate the real-time local event detection problem, and then explore several
of its characteristics, which motivate the design of GeoBurst+.

2.1 Problem Description

Let D = (d1,d2, . . . ,dn , . . .) be a continuous stream of geo-tagged tweets that arrive in chronologi-
cal order. Each tweet d is a tuple 〈td , ld ,Ed 〉, where td is its post time, ld is its geo-location, and Ed
is a bag of keywords. For each tweet, we use an o�-the-shelf tool [12] to extract verbs and nouns
as its keywords. Note that such preprocessing does not a�ect the generality of our method, and
one can also represent each tweet message as a bag of uni-grams for simplicity.

Consider a query time window Q = [ts , te ] where ts and te are the start and end timestamps
satisfying td1 ≤ ts < te ≤ tdn . The local event detection problem consists of two sub-tasks: (1)
extract from D all the local events that occur during Q ; and (2) monitor the continuous stream D
and update the local event list in real time as Q shifts continuously.

2.2 GeoBurst+ Overview

We provide the following insights about the key factors that characterize a local event:

• A local event often results in a group of relevant tweets around its occurring location. Take
Figure 1 as an example. Suppose a protest occurs on the 5th Avenue in New York, many
participants may post tweets on the spot to express their attitude, with keywords such
as “protest” and “rights”. We call such a set of tweets a geo-topical cluster as they are
geographically close and semantically coherent.

• A local event is spatiotemporally unusual. Not necessarily does every geo-topical cluster
correspond to a local event. Continue with the example in Figure 1. During almost any
hour, we can observe many shopping-related tweets on the 5th Avenue. Although such
tweets also form a geo-topical cluster, they do not re�ect any unusual activities. Meanwhile,
the cluster may correspond to a global event instead of a local one. For instance, when a
popular TV show like “Game of Thrones” goes online, we can observe geo-topical clusters
discussing about it in di�erent regions. Such geo-topical clusters do not correspond to local
events as well.

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: March 2017.



GeoBurst+: E�ective and Real-Time Local Event Detection in Geo-Tagged Tweet Streams 1:5

• A local event is spatiotemporally bursty. Even if the cluster is spatiotemporal unusual, it may
not be an interesting event if it has a small size. Previous research has shown that about 40%
tweets are just user babbles. As such, the geo-topical clusters that are not spatiotemporally
bursty may be just uninteresting babbles from a few users instead of meaningful local
events.

fight, rights

rights

demonstration

protest

protest
shop

shop

cloth

apparel

mall

fight

Fig. 1. Example geo-topical clusters.
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Fig. 2. The framework of GeoBurst+.

We claim that a local event is a geo-topical cluster that is spatiotemporallyunusual and shows clear
spatiotemporal burstiness. Based on the above insights, we design the framework of GeoBurst+ in
Figure 2. As shown, there are three key modules: 1) the candidate generator; 2) the summarization
module; and 3) the on-line updater. First, the candidate generator detects all geo-topical clusters
in the query window and regards them as candidates — this step ensures high coverage of the
underlying local events. The discovery of geo-topical clusters relies on a novel authority measure
that captures the cross-modal correlations among the geo-tagged tweets, as well as a novel non-
parametric procedure for detecting all the authority maxima. Second, the summarization module
performs continuous summarization of the stream and extracts background knowledge to classify
the candidate events. It consists of: 1) an activity timeline that stores the typical activities in di�erent
regions; and 2) an embedding learner that derives low-dimensional embeddings for any ad-hoc
tweets. The activity timeline allows for quantifying the spatiotemporal burstiness of each candidate
event, while the embedding learner capture the intrinsic semantics of the short tweets to measure
unusualness. Those two components collectively enable us to extract a set of discriminative features
for each candidate event and thus select out true local events. Third, the online updater can update
the result list in real time as the query window shifts. It will be shown shortly that, the authority
score satis�es an additive property. Hence, instead of �nding new candidates from scratch when
the query window shifts, we can identify them by simply updating the authority scores and then
performing fast authority ascent.

3 THE CANDIDATE GENERATOR

In this section, we describe the candidate generator of GeoBurst+. Given a query window Q and
the set DQ of tweets falling in Q , the candidate generator is to divide DQ into several geo-topical
clusters, such that the tweets in each cluster are geographically close and semantically coherent. The
clustering of DQ , however, poses several challenges: how to combine the geographical and semantic
similarities in a reasonable way? how to capture the correlations between di�erent keywords? and
how to generate quality clusters without knowing the suitable number of clusters in advance?

To address these challenges, we perform a novel pivot seeking process to identify the centers
of geo-topical clusters. Our key insight is that: the spot where the event occurs acts as a pivot
that produces relevant tweets around it; the closer we are to the pivot, the more likely we observe
relevant tweets. Therefore, we de�ne a geo-topical authority score for each tweet, where the
geographical in�uence among tweets is captured by a kernel function, and the semantic in�uence
by random walk on a keyword co-occurrence graph. With this authority measure, we develop
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an authority ascent procedure to retrieve authority maxima as pivots; and each pivot naturally
attracts similar tweets to form a quality geo-topical cluster. Below, we �rst introduce our geo-topical
authority measure to de�ne pivot tweets, and then develop an authority ascent procedure for pivot
seeking.

3.1 Pivot Tweet

3.1.1 Geographical Proximity. Given two tweetsd andd ′, we measure the geographical proximity
ofd ′ tod asG (d ′ → d ) = K (‖ld−ld ′ ‖/h),whereK (·) is a kernel function, ‖ld−ld ′ ‖ is the geographical
distance between d and d ′, and h is the kernel bandwidth. While various kernel functions can be
used, we choose the Epanechnikov kernel here due to its simplicity and optimality in terms of
bias-variance tradeo� [7]. With the Epanechnikov kernel, G (d ′ → d ) becomes

G (d ′ → d ) =

{
c (1 − ‖ld − ld ′ ‖2/h2) if ‖ld − ld ′ ‖ < h
0 otherwise, (1)

where c is a scaling constant of the Epanechnikov kernel.

3.1.2 Semantic Proximity. As each tweet message is represented by a bag of keywords, a very
straightforward idea for measuring semantic proximity is to compute the vector similarity between
two tweet messages. Nevertheless, the e�ectiveness of vector similarity is limited, not only because
tweets are short in nature, but also that the dimensions (keywords) are correlated instead of
independent. To overcome these drawbacks, we propose a random-walk-based approach to capture
semantic proximity more e�ectively.

De�nition 3.1 (Keyword Co-occurrence Graph). The keyword co-occurrence graph for DQ is an
undirected graph G = (V ,E) where: (1) V is the set of all keywords in DQ ; and (2) E is the set of
edges between keywords, and the weight of an edge (ei , ej ) is the number of tweets in which ei
and ej co-occur.

The keyword co-occurrence graph can be easily built from DQ . With such a graph, we employ
random walk with restart (RWR) to de�ne keyword similarity as it uses the holistic graph structure
to capture node correlations. Consider a surfer who starts RWR from the keyword x0 = u. Suppose
the surfer is at keyword xt = i at step t , she returns to u with probability α (0 < α < 1) and
continues sur�ng with probability 1 − α . If continuing, she randomly moves to i’s neighbor j with
probability Pi j , where P is the transition matrix of the graph. The stationary distribution of such a
process de�nes the RWR scores from u to all the keywords in V , and the score from u to keyword
v , denoted as ru→v , is the probability that the surfer resides on v . Given two tweets d and d ′, we
start RWR from the keywords of d ′, and de�ne the semantic proximity of d ′ to d as the average
probability that the random walk resides on d . Formally, let Ed = {e1, e2, . . . , em } be the keyword
set of d , and Ed ′ = {e

′
1, e
′
2, . . . , e

′
n } the keyword set of d ′, then the semantic proximity from d ′ to d is

S (d ′ → d ) =
1
mn

∑
e ∈Ed

∑
e ′∈Ed′

re ′→e . (2)

3.1.3 geo-topical authority. Based on the geographical and semantic proximities, we measure
the geo-topical authority of a tweet as follows.

De�nition 3.2 (Neighbor). Given a tweetd , we sayd ′ is a neighbor ofd ifd ′ satis�esG (d ′ → d ) > 0
and S (d ′ → d ) > δ , where 0 < δ < 1 is a pre-speci�ed threshold.

De�nition 3.3 (Authority). Given a tweet d ∈ DQ , let N (d ) be the set of d’s neighbors in DQ . The
authority of d is A(d ) =

∑
d ′∈N (d )

G (d ′ → d ) · S (d ′ → d ).
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Given a tweet d , d ′ is a neighbor of d if it resembles d both geographically and semantically. The
set of all neighbors in DQ form d’s neighborhood and contribute to d’s authority. We could interpret
De�nition 3.3 as follows: an amount of G (d ′ → d ) energy is distributed from d ′ to d through
random walk on the graph, G (d ′ → d ) · S (d ′ → d ) is the amount that successfully reaches d ; and
d’s authority is the total amount of energy that d receives from its neighbors [38]. The authority
score is analogous to kernel density in the task of non-parametric kernel density estimation [7]. In
kernel density estimation, the density of any point x in the Euclidean space is contributed mainly
by the observed points that are close enough to x . As such, the density maxima can be de�ned in a
non-parametric manner. Analogously, in our problem, the geo-topic authority of any tweet d is
contributed by the observed tweets that are similar to d both geographically and semantically. As a
result, the salient tweets for di�erent activities can be selected in the geo-topical space.

3.1.4 Pivot. With De�nition 3.3, we de�ne a pivot as an authority maximum.
De�nition 3.4 (Pivot). Given a tweet d ∈ DQ and its neighborhood N (d ), d is a pivot if A(d ) =
max

d ′∈N (d )
A(d ′).

Consider a local event that occurs at location l . If d is a tweet discussing about that event at l ,
then d is likely to be surrounded by relevant tweets to become the pivot for that event. The notion
of neighborhood plays an important role in De�nition 3.4: it ensures the supporting tweets are
both geographically close and semantically relevant. This property leads to di�erent pivots that can
distinguish di�erent-semantics events happening at the same location, as well as same-semantics
events happening at di�erent locations.

3.2 Authority Ascent for Detecting Geo-Topical Clusters

Now our task is to �nd all pivots in DQ and assign each tweet to its corresponding pivot. We
develop an authority ascent procedure for this purpose. As shown in Figure 3, starting from a tweet
d1 as the initial center, we perform step-by-step center shifting. Assuming the center at step t is
tweet dt , we �nd dt ’s neighborhood N (dt ), and the local pivot l (dt ) — the tweet having the largest
authority in N (dt ). Then we regard l (dt ) as our new center, i.e., dt+1 = l (dt ). As we continue such
an authority ascent process, the center is guaranteed to converge to an authority maximum. It is
because every shift operation increases the authority of the current center, and the authority is
upper bounded (there are only a �nite number of tweets in DQ ).

neighborhood

d1 d2
d3

neighbor

local pivot

pivot

Fig. 3. An illustration of the authority ascent process.

Algorithm 1 depicts the process of �nding the pivot for every tweet in DQ . As shown, we �rst
compute the neighborhood for each tweet d ∈ DQ (lines 1-2). Subsequently, we compute the
authority of each tweet (lines 3-4), and obtain its local pivot (lines 5-6). So long as the local pivots
are obtained, we perform authority ascent to identify the pivot each tweet belongs to. Finally, the
tweets having the same pivot are grouped into one geo-topical cluster and returned as a candidate
event.

The geographical kernel bandwidth, the geographical threshold, and the semantic threshold
play an important role in constraining the neighbor set and guaranteeing the coherence of the

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: March 2017.



1:8 C. Zhang et al.

ALGORITHM 1: Pivot seeking.
Input: The tweet set DQ , the kernel bandwidth h, the semantic threshold δ .
Output: The pivot for each tweet in DQ .
// Neighborhood computation.

1 foreach d ∈ DQ do
2 N (d ) ← {d ′ |d ′ ∈ DQ ,G (d ′ → d ) > 0, S (d ′ → d ) > δ };

// Authority computation.

3 foreach d ∈ DQ do
4 A(d ) ← d’s authority score computed from N (d );

// Find local pivot for each tweet.

5 foreach d ∈ DQ do
6 l (d ) ← arg max

d ′∈N (d )
A(d ′);

// Authority ascent.

7 foreach d ∈ DQ do
8 Perform authority ascent to �nd the pivot for d ;

�nal geo-topical clusters. Speci�cally: (1) with the Equation 1 and the geographical threshold set
to 0, only the tweets that are close enough to d can fall in d’s neighborhood, thus ensuring the
geographical compactness of the result clusters; (2) with the semantic threshold δ , only the tweets
that are semantically similar enough can fall in d’s neighborhood, thus ensuring the semantic
coherence of the result clusters.

In Algorithm 1, while it is easy to compute geographical proximity based on tweet location, the
challenge is how to compute semantic proximity e�ciently. A naïve idea is to obtain the RWR score
between any two keywords, but such an idea is not e�cient as the keyword co-occurrence graph
can be large. To address this challenge, we leverage the locality of RWR: given a keyword q, we
observe that only a limited number of keywords falling in q’s vicinity have large values, while most
keywords have extremely small RWR scores. We thus introduce the concept of keyword vicinity,
which keeps only large enough RWR scores by exploring a small neighborhood around q. Below,
we demonstrate how to fast compute the keyword vicinity based on the Decomposition Theorem
[16].

Theorem 3.5. For a keyword u, let Ou be the set of u’s out-neighbors in G. Given a keyword q, the
RWR from u to q satis�es

ru→q =




(1 − α )
∑

v ∈Ou
Puvrv→q if u , q

(1 − α )
∑

v ∈Ou
Puvrv→q + α if u = q. (3)

Theorem 3.5 says that, the RWR fromu to q can be derived by linearly combining the RWR scores
of u’s out-neighbors, with extra emphasis on q itself. With this theorem, we use a local computation
algorithm [23] to obtain q’s vicinity. Starting from an initial vicinity, we gradually expand the
vicinity and propagate RWR scores among the keywords falling inside. The RWR approximation
becomes tighter and tigher as the vicinity expansion continues, and terminates when an error
bound ϵ (0 < ϵ � δ ) is guaranteed. Algorithm 2 depicts the detailed vicinity computation process.
To compute q’s vicinity, we maintain two quantities for any keyword u: (1) s (u) is the current RWR
score from u to q; and (2) p (u) is the score that needs to be propagated. We use a priority queue to
keep p (u) for all the keywords. Every time we pop the keyword u that has the largest to-propagate
score, and update the score and to-propagate score for each in-neighbor of u. After that, we set
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ALGORITHM 2: Approximate RWR score computation.
Input: The keyword co-occurrence graph G, a keyword q, the restart probability α , an error bound ϵ .
Output: q’s vicinity Vq .

1 // p (u) is the score of node u that needs to be propagated.

2 s (q) ← α ,p (q) ← α ,Vq ← ϕ;
3 Q ← a priority queue that keeps p (u) for the keywords in G;
4 while Q.peek() ≥ αϵ do
5 u ← Q.pop();
6 for v ∈ I (u) do
7 ∆s (v ) = (1 − α )pvup (u);
8 s (v ) ← s (v ) + ∆s (v );
9 Vq [v]← s (v );

10 Q.update(v , p (v ) + ∆s (v ));

11 p (u) ← 0;

12 return Vq ;

p (u) to zero to avoid redundant propagation. The algorithm terminates when the max element in
the priority queue is less than αϵ , and returns all the keywords that have non-zero RWR scores as
q’s vicinity. Any keyword u not in q’s vicinity must satisfy ru→q < ϵ .

Theorem 3.6. Let r̂u→q be the approximate RWR score computed by Algorithm 2, then r̂u→q
satis�es |ru→q − r̂u→q | ≤ ϵ . The time complexity of Algorithm 2 is O (Dq/α log 1/(ϵα )), where
Dq =

∑
u :su→q>αϵ

( |I (u) | + log |V |).

Proof. See [23] for details. �

With Theorem 3.6, we further analyze the complexity of Algorithm 1 as follows. First, for each
keyword, we need to compute its vicinity using Algorithm 2. Assume the total number of keywords is
M , then the complexity of this part isO (MDq/α log 1/(ϵα )), where Dq =

∑
u :su→q>αϵ

( |I (u) |+ log |V |).

Second, based on the obtained keyword vicinities, we need to perform the pivot seeking process for
every tweet in the query window. Assume the maximum number of tweets in the query window is
N , then the time complexity of the pivot seeking process isO (N 2). Therefore, the overall complexity
of the candidate generation step is O (MDq/α log 1/(ϵα ) + N 2).

4 CANDIDATE EVENT CLASSIFICATION

Up to now, we have obtained a set of geo-topical clusters in the query window as candidate events.
Nevertheless, as aforementioned, not necessarily does every candidate correspond to a local event.
In this section, we describe the module for candidate event classi�cation. The foundation of our
classi�cation is the summarization module, which learns word embedding to capture the semantics
of short tweet messages and meanwhile constructs the activity timeline to reveal routine regional
activities. In what follows, we describe embedding learning and activity timeline construction in
Section 4.1 and 4.2, respectively; and then present the classi�er in Section 4.3.

4.1 Learning Embeddings from the Stream

The embedding learner aims at capturing the semantics of short text by jointly mapping the
tweet messages and keywords into the same low-dimensional space. If two tweets (keywords)
are semantically similar, they are forced to have close embedding vectors in the latent space. The
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learner continuously consumes a massive amount of tweets from the input stream and learns to
preserve their intrinsic semantics. As such, it can generate �xed-length vectors for any text pieces
(e.g., the candidate event and the background activity), which serve as high-quality features to
discriminate whether a candidate event is indeed a local event or not.

The objective of the embedding learner is to reconstruct the observed tweets as much as possible.
Speci�cally, given a tweetd and a set of keywordsw1,w2, . . . ,wn that appear ind , we model the prob-
ability of observing the keywordwi (1 ≤ i ≤ n) asp (wi |d−i ) = exp(s (wi ,d−i ))/

∑
w j ∈V exp(s (w j ,d−i )),

where d−i is the set of all the units in d except wi , s (wi ,d−i ) is the similarity score between wi and
d−i based on their embeddings, andV is the keyword vocabulary. The key is how to de�ne s (wi ,d−i ).
Inspired by the success of the Paragraph Vector model [20] for capturing the semantics of sentences
and documents, we assume both the keywords and the tweet itself have latent representations in
the common space. Such a joint embedding strategy can lead to more discriminative representations
for the tweet compared to learning keywords’ embeddings alone and computing the average as the
tweet embedding. Hence, we de�ne s (wi ,d−i ) as

s (wi ,d−i ) = vT
i

vd +
∑
w j ∈d−i vj

|d−i | + 1
,

where vi and vj are the latent embeddings for word wi and w j , respectively; and vd is the latent
embedding for the tweet d .

Ideally, the embeddings of the tweets and keywords should be learnt to maximize the likelihood
of observing all the tweets seen so far. Nevertheless, as the embedding learner runs in a stream
setting, it is infeasible to store all the seen tweets and iterate through them for multiple epochs
— as done in previous works. To tackle this issue, we maintain a �xed-size cache for storing the
incoming tweets. Once the cache is saturated, we randomly shu�e the stored tweets and use them
to update the embeddings of the keywords, and then empty the cache to accommodate future
tweets from the stream. More speci�cally, let C be the collection of tweets in the current cache, we
de�ne the objective function as observing all the units in C , namely

O = −
∑
d ∈C

∑
wi ∈d

logp (wi |d−i ). (4)

To e�ciently optimize the above objective, we use stochastic gradient descent (SGD) and negative
sampling [25]. At each time, we use SGD to sample a tweet d and a word wi ∈ d . With negative
sampling, we randomly select K negative words that do not appear in d , then the loss function for
the selected samples becomes:

L = − logσ (s (wi ,d−i )) −
K∑
k=1

logσ (−s (wk ,d−i )),

where σ (·) is the sigmoid function. Letting hi = (vd +
∑
w j ∈d−i vj )/( |d−i | + 1), then the updating

rules for vi , vk , and hi can be obtained based on the following derivatives:

∂L

∂vi
= −σ (−s (wi ,d−i ))hi ;

∂L

∂vk
= σ (s (wi ,d−i ))hi ;

∂L

∂hi
=

K∑
k=1

σ (s (wk ,d−i ))vk − σ (−s (wi ,d−i ))vi .

For any unit j in hi (can be the tweetd or any keywordw ∈ d−i ), we have ∂L/∂vj = ∂L/∂hi ·∂hi/∂vj ,
as hi is linear in j, the item ∂hi/∂vj is straightforward to obtain.
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Relying on the tweet caching strategy and the SGD optimization procedure, the embedding
learner continuously consumes the geo-tagged tweet stream and keeps updating the embeddings
for di�erent keywords and tweets. With the learnt keyword embeddings, the embedding of any
ad-hoc text piece can be easily derived with SGD. As we will illustrate shortly, such a property
enables us to quantify the spatiotemporal unusualness of each candidate event and extract highly
discriminative features to pinpoint true local events.

4.2 Activity Timeline Construction

The activity timeline aims at unveiling the typical activities in di�erent regions during di�erent time
periods. For this purpose, we design a structure called tweet cluster (TC) and extend the CluStream
algorithm [2]. Let S be a set of tweets that are geographically close, its TC maintains the following
statistics:

1) n = |S |: the number of tweets.
2)ml =

∑
d ∈S ld : the sum vector of locations.

3)ml 2 =
∑
d ∈S ld ◦ ld : the squared sum vector of locations.

4)mt =
∑
d ∈S td : the sum of timestamps.

5)mt 2 =
∑
d ∈S t

2
d : the squared sum of timestamps.

6)me =
∑
d ∈S Ed : the sum dictionary of keywords.

The TC essentially provides a concise where-when-what summary for S : (1) where: with n,ml ,
andml 2 , one can easily compute the location mean and variance for S ; (2) when: with n,mt , andmt 2 ,
one can compute the mean time and temporal variance for S ; and (3) what:me keeps the number
of occurrences for each keyword.

These �elds in a TC S enable us to estimate the number of keyword occurrences at any location.
First, the quantities n, ml , and ml 2 allow us to compute the center location of the TC S . Second,
theme tracks the number of occurrences for di�erent keywords around the centered location of S .
With either spatial interpolation or kernel density estimation, one can estimate the occurrences of
keyword k at any ad-hoc location based on the distance to the center location of S .

Moreover, TC satis�es the additive property, i.e., the �elds can be easily incremented if a new
tweet is absorbed. Based on this property, we adapt CluStream to continuously clusters the stream
into a set of TCs. When a new tweet d arrives, it �nds the TC m that is geographically closest to d .
If d is withinm’s boundary (computed from n,ml , andml 2 , see [2] for details), it absorbs d intom
and updates its �elds; otherwise it creates a new TC for d . Meanwhile, we employ two strategies to
limit the maximum number of TCs: (1) deleting the TCs that are too old and contain few tweets;
and (2) merging closest TC pairs until the number of remaining TCs is small enough. We cluster
the continuous stream and store the clustering snapshots at di�erent timestamps. Since storing the
snapshot of every timestamp is unrealistic, we use the pyramid time frame (PTF) structure [2] to
achieve both good space e�ciency and high coverage of the stream history.

4.3 The Classifier

The learnt embeddings and the activity timeline serve as useful background knowledge for classi-
fying candidate events. Based on them, we extract the following set of discriminative features to
characterize each candidate event:
Temporal unusualness. The temporal unusualness measures how unusual a candidate C is at
its pivot location lC . To quantify C’s temporal unusualness, our idea is to leverage the embedding
learner to obtain low-dimensional vectors for both the candidate C as well as the the background
activity at lC to compare them.

We compute the temporal unusualness measure as follows.
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(1) For the candidateC , we form a pseudo tweet ofC by selecting the top K keywords based on
TF-IDF weights. Once the pseudo tweet is obtained, we process it with the learnt keyword
embeddings to derive its textual embedding, denoted as vC .

(2) To obtain the embedding for the background activity, we examine the most recent snapshot
from the activity timeline and retrieve the closest cluster with lC . Such a cluster, denoted as
Tl , encodes the typical activities around location lC . Based on the statistics stored in Tl , we
again form a pseudo tweet for Tl by selecting the top K keywords, and then use keyword
embeddings to obtain the embedding of Tl , denoted as vT .

(3) After computing the two vectors vC and vT , we compute temporal unusualness as the
cosine distance between them, namely

fT (C ) = cos(vC , vT ).

Spatial unusualness. The spatial unusualness captures how spatially unique the candidate C is
compared to other candidate events in the query window. We quantify the spatial unusualness as
follows:

We compute the spatial unusualness measure as follows.
(1) For the candidate C , we still form a pseudo tweet of C by selecting the top K keywords

based on TF-IDF weights, and derive its embedding vC .
(2) Given the tweet corpora DQ in the query window, we select the top K keywords from DQ

based on TF-IDF weights, and derive its embedding vQ .
(3) We compute spatial unusualness as the cosine distance between the two vectors

fT (C ) = cos(vC , vQ ).

Temporal burstiness. To measure how temporally bursty a candidate event C is, we quantify the
temporal burstiness of each keyword in C , and then aggregate the burstiness of all the keywords.
As shown in Figure 4, we retrieve the snapshots in a reference time window R that right precedes
the query window Q . Each pair of consecutive snapshots in R corresponds to a historical activity,
de�ned as follows.

De�nition 4.1 (Historical activity). Let s1 and s2 be two snapshots at timestamp ts1 and ts2 (ts1 < ts2 ).
The historical activity during the time interval [ts1 , ts2] is the set of TCs obtained by subtracting s1
from s2.

reference window R

query 
window Q

time
snapshot

m2

m1 m3

m4

m5
m6

m7 m8

m2

m1 m3

m4

m5
m6

m2

m1

m4

m6
m7 m8

subtract

-
historical activity 

for [s1, s2]

s4s3s2s1

C

TC after 
subtraction

candidate
eventTC

TC matching

activity timeline

Fig. 4. Retrieving historical activities from activity timeline.

Let us use an example in Figure 4 to illustrate how we acquire historical activities in the reference
window R. As shown, the snapshots s1, s2, s3, s4 fall in R. For each pair of consecutive snapshots,
i.e.,[s1, s2], [s2, s3], [s3, s4], we perform snapshot subtraction to obtain the historical activity during

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: March 2017.



GeoBurst+: E�ective and Real-Time Local Event Detection in Geo-Tagged Tweet Streams 1:13

the respective time interval. For instance, for the snapshot pair [s1, s2], we subtract s1 from s2 and
obtain the historical activity, represented as a set of TCs: {m1,m2,m4,m6,m7,m8}. Note that the
subtraction of two snapshots can be easily done by matching TC ids and subtracting the �elds. With
each historical activity, we can use kernel density estimation to infer k’s occurrences at location lC .
As R contains multiple historical activities, and each can generate an estimation of keyword k’s
occurrences at location lC , we obtain a set of estimations, denoted as Ωt = {N̂1 (k ), N̂2 (k ), . . . , N̂c (k )}.
Then we use z-score to quantify k’s temporal burstiness:

zt (k ) = (N (k ) − µΩt )/σΩt ,

where N (k ) is k’s actual number of occurrences in C , and µΩt and σΩt are the mean and standard
deviation of Ωt .
Spatial burstiness. To measure spatial burstiness, we horizontally compare all the candidates
in Q . The rationale is that, among the spatially scattered candidates, a keyword k in candidate C
is spatially bursty if k’s proportion in C is signi�cantly higher than in other candidates. Given n
candidate events C1,C2, . . . ,Cn , let Pi denote the keyword probability distribution of candidate Ci .
With Ωs = {P1 (k ), P2 (k ), . . . , Pn (k )}, we compute the spatial burstiness of keyword k in candidate
Ci as:

zs (k ) = (Pi (k ) − µΩs )/σΩs ,

where µΩs and σΩs are the mean and standard deviation of Ωs . The underlying assumption of com-
puting the z-score as the spatial burstiness (as well as the temporal burstiness) is that, the fraction
of any keyword across di�erent regions (days) follows a normal distribution. Such an assumption
is reasonable given the regularity and periodicity underlying people’s everyday activities. Under
such an assumption, a large z-score typically re�ects certain unusual burst of the keyword, and
could be good indicators for local events.

Static features. For each candidate C , we also extract the following static features:

(1) |C |: the total number of tweets in C .
(2) STDt |C |: the standard deviation of the timestamps of the tweets in C .
(3) STDlat |C |: the standard deviation of the latitudes of the tweets in C .
(4) STDlnд |C |: the standard deviation of the longitudes of the tweets in C .

The classi�cation procedure. With the above features, we use logistic regression to train a binary
classi�er and judge whether each candidate is indeed a local event. We choose logistic regression
because of its robustness when there is only a limited amount of training data. While we have
also tried using other classi�ers like Random Forest and SVM, we �nd that the logistic regression
classi�er produces the best result in our experiments. The labeled instances for the classi�er are
collected through a large-scale experiment on a popular crowdsourcing platform. We will shortly
detail the annotation process in Section 6.

We analyze the complexity of the candidate classi�cation step as follows. As the prediction
time of logistic regression is linear in the number of features and has O (1) complexity, the time
cost is dominated by the feature extraction process. Let NC be the maximum number of tweets
in each candidate, and M be the keyword vocabulary size, D be the latent embedding dimension,
and NQ be the number of tweets in the query window. We need to extract the features for all the
candidates in the query window. The time costs for extracting di�erent features for each candidate
event are analzyed as follows: (1) For the temporal unusualness measure, its time complexity is
O (M + NA +D) where NA is the maximum number of TCs in one snapshot of the activity timeline;
(2) For the spatial unusualness measure, its time complexity isO (M +NQ +D); (3) For the temporal

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 1. Publication date: March 2017.



1:14 C. Zhang et al.

burstiness measure, its time complexity is O (MNA); (4) For the spatial burstiness measure, its time
complexity is O (MNC ); (5) For the static features, the total time complexity is O (NC ).

5 THE ONLINE UPDATER

In this section, we present the online updater of GeoBurst+. Consider a query window Q , let Q ′
be the new query window after Q shifts. Instead of �nding the local events in Q ′ from scratch, the
online updater leverages the results in Q and updates the event list with little cost.

If one runs the batch detection algorithm in the updated window Q ′, the candidate generation
step will dominate the total time cost in the two-step detection process, while the candidate
classi�cation step is very e�cient. Hence, our focus for supporting e�cient online detection is to
develop algorithms that can fast update the geo-topical clustering results when the query window
shifts from Q to Q ′.

To guarantee generating the correct clustering results in Q ′, the key is to �nd the new pivots in
the new window Q ′ based on the previous results in Q . Let DQ be the tweets falling in Q and D ′Q
be the tweets in Q ′. We denote by RQ the tweets removed from DQ , i.e., RQ = DQ − D

′
Q ; and by

IQ the tweets inserted into DQ , i.e., IQ = D ′Q − DQ . In the sequel, we design a strategy that �nds
pivots in D ′Q by just processing RQ and IQ . Recall that, the pivot seeking process �rst computes
the local pivot for each tweet and then performs authority ascent via a path of local pivots. So long
as the local pivot information is correctly maintained for each tweet, the authority ascent can be
fast completed. The major idea for avoiding �nding pivots from scratch is that, as DQ is changed to
D ′Q , only a number of tweets have their local pivots changed. We call them mutated tweets, de�ned
as follows.

De�nition 5.1 (Mutated Tweet). A tweet d ∈ D ′Q is a mutated tweet if d’s local pivot in D ′Q is
di�erent from its local pivot in DQ .

Now the questions is, how do we fast identify the mutated tweets by analyzing the in�uence
of RQ and IQ? Our observation is that, for any tweet, it can become a mutated tweet only if at
least one of its neighbors has authority change. Therefore, we take a reverse search strategy to
�nd mutated tweets: (1) First, we identify in D ′Q all the tweets whose authorities have changed. (2)
Second, for each authority-changed tweet t , we retrieve the tweets that regard t as its neighbor, and
update their local pivots. Hence, the remaining issue is just to �nd the authority-changed tweets.
In what follows, we handle RQ and IQ to this end.
Handling deletions. The deletion of a tweet d ∈ RQ can cause authority change in two ways.
First, for the tweets having d as a neighbor in DQ , their authorities decrease. Second, the keyword
co-occurrence graph may evolve because of deleting d . As a result, the vicinities of certain keywords
need to be recomputed and the authorities of corresponding tweets may change. The �rst case can
be easily handled due to the additive property of authority. When d is deleted, we simply retrieve
the tweets having d as a neighbor in DQ . For each of those tweets, we subtract d’s contribution
from the authority score. For the second case, the key is to identify the keywords that need vicinity
recomputation. Let us look at an example in Figure 5. If d contains two keywords e1 and e2, deleting
d would decrease the weight of the edge [e1, e2]. For any other keywords having e1 or e2 in their old
vicinities (e3 and e4 in this example), we mark them as to-recompute keywords. However, we defer
the computation of their vicinities until IQ is handled to identify the complete set of to-recompute
keywords.
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e1 e2
e3 e4

Fig. 5. Updating the keyword co-occurrence graph and keyword vicinities.

Handling insertions. A new tweet d ∈ IQ can also cause authority changes in two ways: (1)
increasing the authority of the tweets that regard d as a neighbor; and (2) making the keyword
co-occurrence graph evolve. Here, we need to �rst deal with the second case to ensure authority
computation in the �rst case is based on the updated keyword vicinities. Similarly, we identify the
keywords whose attaching edges have weight change, and mark other keywords that include such
keywords in their vicinities. After all the to-recompute keywords are identi�ed, we call Algorithm
2 to obtain their new vicinities. Once the keyword vicinities are updated, we retrieve the a�ected
tweet pairs and update the corresponding authority scores. For the second case, now that the
keyword vicinities have already been updated, for the inserted tweet d , we simply �nd which other
tweets having d as their neighbor, and then add d’s contribution to their authorities.

6 EXPERIMENTS

6.1 Experimental Se�ings

Compared methods. We compare GeoBurst+ with the following methods:

• EvenTweet [1] extracts bursty and localized keywords as features, and then clusters those
features based on spatial distributions.

• Wavelet [6] uses wavelet transform to identify spatiotemporally bursty keywords and
then clusters them by considering both co-occurrence and spatiotemporal distribution.

• GeoBurst [41] is a preliminary version of GeoBurst+. It neither uses embedding to capture
textual semantics, nor has the classi�cation module for accurate event identi�cation. Instead,
it heuristically ranks all the candidates by the weighted combination of the spatial burstiness
and temporal burstiness.

• GeoBurst* is an adapted version of GeoBurst+, which does not use the features generated
by the embedding learner (i.e., the temporal unusualness and spatial unusualness) for
candidate event classi�cation.

Data Sets and Ground Truth. Our experiments are based on two real-life data sets, both of which
are crawled using Twitter Streaming API during 2014.08.01 — 2014.11.30. The �rst data set, referred
to as NY, consists of 6.41 million geo-tagged tweets in New York (after removing the tweets that
do not have any verbs or nouns). The second data set, referred to as LA, consists of 5.53 million
geo-tagged tweets in Los Angeles.

To evaluate the performance of di�erent local event detection methods, we randomly generate
160 query time windows that are non-overlapping. We generated those queries with four di�erent
lengths: 3-hour, 4-hour, 5-hour, and 6-hour; and there are thus 40 queries for each query length. As
all the methods require a reference window, we use a one-week reference window right preceding
each query.

Now we describe the process for collecting groundtruth local events on NY and LA using a
crowdsourcing platform. For every query, we run the methods to retrieve local events on the two
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data sets, and upload the results to CrowdFlower1, a popular crowdsourcing platform, for evaluation.
For GeoBurst+ and its variants, we ran both the batch mode and online mode to detect local events
in the query window, and found these two modes produce exactly the same results. Thus, we only
upload the results produced by the online mode and report its e�ectiveness. On CrowdFlower,
we represent each event with 5 most representative tweets as well as 10 representative keywords,
and ask three CrowdFlower workers to judge whether the event is indeed a local event or not. To
ensure the quality of the workers, we label 20 queries for groundtruth judgments on each data
set, such that only the workers who can achieve no less than 80% accuracy on the groundtruth
can submit their answers. Finally, we use majority voting to aggregate the workers’ answers. The
representative tweets and keywords are selected as follows: (1) For GeoBurst+ and its variants,
each event is a cluster of tweets, we select the 5 tweets having the largest authority scores, and the
10 keywords having the largest TF-IDF weights. (2) EvenTweet represents each event as a group
of keywords. We select top-10 keywords in each event. Then we regard the group of keywords
as a query to retrieve the top-5 most similar tweets using the BM25 retrieval model. (3) Wavelet
represents an event with both keywords and matching tweets. We simply select the top-5 tweets
and the top-10 keywords.

As both GeoBurst+ and GeoBurst* are supervised methods, we need to obtain training data for
the candidate classi�ers. The process for collecting the ground-truth events is described as follows:
after gathering judgments from CrowdFlower, we rank the 160 query windows in chronological
order. We train the candidate event classi�ers for GeoBurst+ and GeoBurst* using the labeled
candidates from the �rst 80 queries, and used the labeled data from the remaining 80 queries for
evaluating all the methods.
Parameters. There are three major parameters in GeoBurst+: (1) the kernel bandwidth h; (2) the
restart probability α ; and (3) the RWR similarity threshold δ . We set h = 0.01,α = 0.2, and δ = 0.02.
We have tuned these parameters and �nally set them to these values because of the following
reasons: (1) α speci�es the restart probability during the random walk with restart process. To
ensure good performance of the RWR measure, it is common to set it to the range [0.1, 0.3]. After
tuning it on our data, we �nd that α = 0.2 produces quality geo-topical clusters; (2) h controls
the spatial granularity of geo-topical clustering process. With h = 0.01, we �nd that the geo-topic
clusters are geographically compact enough; and (3) δ controls the semantic coherence of the
results clusters. We observe that setting δ into the range [0.01, 0.025] produces clusters that are
of high quality. A too large δ imposes a too strong constraint that could split relevant tweets into
di�erent clusters; while a too small δ could make the clusters too coarse-grained such that the
tweets about di�erent activities are grouped into the same cluster.

EvenTweet partitions the whole space into N ×N small grids. We �nd N is EvenTweet’s most
sensitive parameter, and set N = 50 after tuning. For Wavelet, the most sensitive parameters are the
granularities for constructing the spatiotemporal signal. After tuning, we set the space partitioning
granularity to δx = 0.1,δy = 0.1; and the time granularity to δt = 3 hours. For GeoBurst, it shares
the three parameters with GeoBurst+, but has one more parameter η balancing the spatial and
temporal burstiness in the ranking module. By default, we set η = 0.5.

6.2 E�ectiveness Study

6.2.1 �antitative Comparison. As aforementioned, after generating the 160 queries, we use the
labeled data in the last 80 query windows for evaluation. To quantify the performance of all the
methods, we report the following metrics:

1http://www.crowd�ower.com/
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(1) The detection precision is computed as P = Ntrue/Nreport, where Ntrue is the number of true
local events in the result list and Nreport is the number of reported events.

(2) While the precision is easy to compute, the detection recall is hard to obtain due to the
lack of the comprehensive set of local events in a given query window. We thus propose
to measure the pseudo recall for each method. Speci�cally, for each query window, we
aggregate all the true local events detected by di�erent methods. Let Ntotal be the total
number of the distinct local events detected by all the methods; we compute the pseudo
recall of each method as R = Ntrue/Ntotal.

(3) Finally, we also report the F1 score of each method, which is simply computed as F1 =
2 ∗ P ∗ R/(P + R).
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(a) Performance comparison on NY.
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(b) Performance comparison on LA.

Fig. 6. Comparing the detection precision, recall, and F1 score of di�erent methods on NY and LA.

Figure 6 shows the precisions, recalls, and F1-scores of all the methods on NY and LA. Comparing
the �ve methods, we �nd that GeoBurst+ signi�cantly outperforms the baseline methods on both
data sets. The huge improvements indicate the superiority of GeoBurst+’s two-step scheme: (1)
the candidate generation step ensures a good coverage of all potential local events; and (2) the
classi�cation step e�ectively pinpoints the true local events based on the features that captures the
burstiness and unusualness of each candidate event.

Comparing the performance of GeoBurst+ and its variants, we �nd thatGeoBurst+ outperforms
GeoBurst by as much as 42.3% percent. Such a performance gap demonstrates that the features
(i.e., temporal unusualness and spatial unusualness) extracted from the embedding module indeed
capture the characteristics of local events. Meanwhile, the classi�cation procedure e�ectively
leverages the extracted features to pinpoint true local events from the candidate set. GeoBurst*
has better performance than GeoBurst, but is outperformed by GeoBurst+ considerably. This
phenomenon further suggests that the two features generated by the embedding module play an
important role in the classi�cation process. Overall, Wavelet and EvenTweet perform much
poorer than GeoBurst+ and its variants. For Wavelet, it is more suitable for detecting local events
in a long time span. When the query windows are short, Wavelet fails to extract the less bursty
but still interesting keywords. For EvenTweet, it deals with the text part by simply considering
each keyword as an independent item, and thus fails to capture the intrinsic correlations among
the keywords.
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• Giants vs. Patriots #metlife #nfl @ MetLife Stadium
• GIANTS WIN? #giants #football #metlife #winning @ MetLife 

Stadium http://t.co/3MqBIROTHJ
• Giants v. Patriots pre-season @ MetLife Stadium http://t.co/

dZUhLVrjGD
• Giants vs Patriots who do I root for...... #firstprofootballgame @ 

MetLife??? http://t.co/EcAw2GCVRn
• Enjoying the game with my fav girl. Let’s go Pats!!

(a) NY local event I: the football game between the Giants and the Patriots.

• Electric Zoo Sunday before it got cancelled again @ Electric Zoo 
Festival, Randalls Island Park http://t.co/UCQh83SmHf

• EZoo Day 2! #EZOO6 @ Electric Zoo Festival, Randalls Island Park
• Wonderful and kind couple. You guys are the bomb! #Ezoo @ Electric 

Zoo Festival, Randalls Island Park http://t.co/IYtylgnY9u
• A blast in a glass ! #ezoo #confetti #ezoonyc @ Electric Zoo Festival
• Thanking you for another great weekend @ Electric Zoo Festival

(b) NY local event II: the Electric Zoo Festival at the Randalls Island Park.

• Whoa....earthquake?  Anyone feel it!?
• Ok I def felt an earthquake
• Shit earthquake..
• I usually never feel earthquakes but I felt that one. In San Perdo, CA
• I think I'm tripping ... i thought I felt an earthquake haha

(c) LA local event I: a level 3.3 earthquake near San Pedro.

• At The Stop The Violence Rally at Leimert Park #mikebrow
• #justiceformikebrown @ Leimert Park 2014 http://t.co/KT6OpOkTRU
• #MikeBrown #Ferguson #WeStandWithYou #LAprotest @ Leimert 

Plaza Park http://t.co/jQc3H3wnIZ
• Angelenos are ready to rise up. #NMOS14 #DontShoot #HandsUp 

#JusticeForMikeBrown @ Leimert Plaza Park
• Although the rally was bullshit. @ilusttv and I look good. @ Leimert 

Park 

(d) LA local event II: a protesting rally at the Leimert Park.

Fig. 7. Example local events detected by GeoBurst+ on the NY and LA data sets. For each event, we plot the

locations of the member tweets and show the top five tweets that have the largest authority scores.

6.2.2 Case Studies. In this subsection, we illustrate the example local events detected by
GeoBurst+ on NY and LA. For each event, we plot the locations of the member tweets and
select the top �ve tweets that have the largest authority scores. Figure 7(a) and 7(b) show two local
events detected on NY: 1) the football game between the Giants and the Patriots; and 2) the Electric
Zoo Festival. Examining the detected local events, one can see the generated geo-topical clusters
are of high quality: the tweets in each cluster are both geographically compact and semantically
coherent. Interestingly, GeoBurst+ can group the tweets that discuss about the topic using di�erent
keywords (e.g., “Pats” and “Patriots”). This is because the RWR measure e�ectively captures the
subtle semantic correlations between keywords. Another observation is that, the pivot tweets
of each cluster are highly interpretable. This is because such high-quality tweets mention most
important keywords about the topic and locate closely to the occurring spot, thereby receiving
high authority scores.
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Figure 7(c) and 7(d) show two local events detected on the LA data set. The �rst is an earthquake
occurred in the San Pedro area; and the second is a protesting rally held at the Leimert Park to �ght
for Mike Brown. Again, we can see the representative tweets are highly interpretable. Meanwhile,
the locations of the earthquake event are more scattered, while the locations of the protest event are
very concentrated around the Leimert Park area. Such a phenomenon is explained by the fact that
the earthquake in�uences a much larger geographical scope than the protest event, and GeoBurst+
can robustly detected the local events that have di�erent scopes.

6.3 E�iciency Study

6.3.1 Running time comparison. We �rst compare the running time of di�erent methods, by
generating 500 random queries with di�erent lengths and reporting the running time of each
method. As the running time of GeoBurst+ and GeoBurst* are almost the same, we omit the
results for GeoBurst*. We run GeoBurst+ in both batch mode and online mode. Given a query
window Q , the batch mode performs candidate generation and classi�cation in Q ; the online mode
considers a window Q ′ that precedes Q by 10 minutes, and �nds local events in Q by updating the
results in Q ′.

Figure 8 shows the running time of all the methods on NY and LA. We observe that GeoBurst+
is much more e�cient than EvenTweet and Wavelet even when in the batch mode. This phe-
nomenon is explained by two facts. First, in the candidate generation step, the approximate RWR
computation strategy can e�ectively speed up the pivot seeking process. Second, in the classi�cation
step, GeoBurst+ just uses a number of historical activities to extract the feature set, which is very
e�cient. Meanwhile, the online mode is even much faster than the batch mode. This is expected
as the online mode does not need to �nd pivots from scratch in the time-consuming candidate
generation step, but just needs to process the updated tweets and can achieve excellent e�ciency.
The batch mode of GeoBurst is a bit more e�cient than GeoBurst+, because GeoBurst+ needs
to extract embedding-based features in addition to the spatial and temporal burstiness and thus
incurs extra overhead. Nevertheless, the marginal e�ciency overhead of GeoBurst+ brings about
large improvements in detection e�ectiveness and is thus cost-e�ective.
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Fig. 8. Running time v.s. # tweets in the query window.

The major overhead of EvenTweet and Wavelet is due to their space partitioning strategy.
Speci�cally, EvenTweet needs to compute spatial entropy to select localized keywords and perform
clustering based on keyword spatial distributions; Wavelet needs to perform wavelet transform
on the spatiotemporal signal and compute the spatiotemporal KL-divergence between keywords.
One may propose to partition the space at a coarser granularity to improve the running time of the
two methods, but that comes with the price of being much less e�ective.

6.3.2 Throughput Study. In Figure 9, we report the scalability of GeoBurst+’s online mode in
terms of the number of updates: Nupdate = Ndelete + Ninserte. To this end, we choose a 3-hour query
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Fig. 9. Throughput of GeoBurst+’s online mode.
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Fig. 10. Time cost of stream summarization (NY).

window Q . Then we use a window Q ′ that precedes Q by 1, 2, . . ., 10 minutes, respectively, and
update the results in Q ′. One can observe that the running time of the online mode shows good
scalability with the number of updates. For example, when there are as many as 212 updates, the
online mode takes just 0.337 second to �nish on the NY data set. Such performance suggests that,
GeoBurst+ is capable of continuously monitoring the stream and realizing real-time detection.

To study the throughput of GeoBurst+’s summarization module, we apply it to process the
continuous streams of NY and LA, and periodically record the number of tweets processed so far
and the time for summarization. As the summarization consists of embedding learning and activity
timeline construction, we report the time cost for each of them w.r.t the number of processed
tweets. With the NY data set, Figure 10(a) and 10(b) show the scalability for embedding learning
and activity timeline construction, respectively. One can observe that, for the three-month tweets
in New York, GeoBurst+ learnt the embeddings in 330.82 seconds and constructed the activity
timeline in 831.85 seconds, and both operations scale well with the number of tweets. The results
and trends are similar on LA, we omit them to save space.

7 RELATED WORK

7.1 Global Event Detection

Global event detection aims at extracting events that are bursty and unusual in the entire tweet
stream. Existing approaches to this end can be classi�ed into two categories: document-based and
feature-based. Document-based approaches consider each document as a basic unit and group
similar documents to form events. Allan et al. [4] perform single-pass clustering of the stream,
and use a similarity threshold to determine whether a new document should form a new topic or
be merged into an existing one. Aggarwal et al. [3] also detect events by continuously clustering
the tweet stream, but their similarity measure considers both tweet content relevance and user
proximity. Sankaranarayanan et al. [30] train a Naïve Bayes �lter to identify news-related tweets,
and cluster them based on TF-IDF similarity. They also enrich each piece of news with location
information by extracting geo-entities. Feature-based approaches [11], [14], [24], [33], [21] identify
a set of bursty features (e.g., keywords) from the stream and cluster them into events. Fung et al.
[11] model feature occurrences with binomial distribution to extract bursty features. He et al.
[14] construct the time series for each feature and perform Fourier Transform to identify bursts.
Weng et al. [33] use wavelet transform and auto-correlation to measure word energy and extract
high-energy words. Li et al. [21] segment each tweet into meaningful phrases and extract bursty
phrases based on frequency, which are clustered into candidate events and further �ltered using
Wikipedia. The above methods are all designed for detecting global events that are bursty in the
entire stream. As aforementioned, a local event is usually bursty in a small geographical region
instead of the entire stream. Hence, directly applying these methods to the geo-tagged tweet stream
would miss many local events. There has also been work [29], [27], [22] on detecting speci�c types
of events. Sakaki et al. [29] investigate real-time earthquake detection. A classi�er is trained to
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judge whether an incoming tweet is related to earthquake or not, and an alarm is released when
the number of earthquake-related tweets is large. Li et al. [22] detect crime and disaster events
(CDE) with a self-adaptive crawler that dynamically retrieves CDE-related tweets. Di�erent from
those studies, we aim to detect all kinds of local events from the stream.

7.2 Local Topic and Event Detection

There have been quite a few studies that model the topics/activities in di�erent regions with geo-
tagged social media. Speci�cally, Sizov et al. [31] extends LDA [5] by assuming each latent topic
has a multinomial distribution over text, and two Gaussians over latitudes and longitudes. They
later extend the model to �nd topics that have complex and non-Gaussian distributions [18]. Yin
et al. [34] extend PLSA by assuming each region has a normal distribution that generates locations,
as well as a multinomial distribution over the latent topics that generate text. Guo et al. [13] uses
Dirichlet Process to extract activities that freely span several regions and peaks multiple times.
Zhang et al. [39] propose a cross-modal embedding framework for uncovering the typical activities
in di�erent geographical regions and time periods. While the above models are designed to detect
macro-level geographical topics, Hong et al. [15] and Yuan et al. [35] introduce the user factor
in the modeling process such that micro-level user preferences can be inferred. There is a clear
di�erence between geographical topic modeling and local event detection. The former attempts to
summarize the typical activities in di�erent regions, whereas the latter aims at extracting unusual
activities bursted in local areas.

Watanabe et al. [32] and Quezada et al. [28] study location-aware events in the social media, but
their major focus is on geo-locating tweets/events, whereas we aim to automatically extract local
events from raw geo-tagged tweets. Chen et al. [6] extract events from geo-tagged Flickr photos.
By converting the spatiotemporal distribution of each tag into a 3-dimensional signal, they perform
wavelet transform to extract spatiotemporally bursty tags, and clusters those tags into events based
on co-occurrence as well as spatiotemporal distributions. Such a method, however, can only detect
local events in batch manner. Krumm et al. [19] propose the detection of spatiotemporal spikes in
the tweet stream as local events. Nevertheless, their approach can only detect events for pre-de�ned
rigid time windows (e.g., 3-6 pm, 6-9 pm), because it discretizes time and compares the number of
tweets in the same bin across di�erent days. It supports neither ad-hoc query windows nor real-
time detection. Abdelhaq et al. [1] propose EvenTweet, which �rst extracts bursty and localized
keywords and then clusters such keywords based on their spatial distributions. Unfortunately,
EvenTweet su�ers from two drawbacks. First, the clustering of localized keywords is merely
based on spatial distribution without considering tweet content. It results in irrelevant keywords
in the same cluster, and cannot distinguish di�erent events that occur at the same location. Second,
although EvenTweet is an online method, it is incapable of detecting local events in real time,
as the detection is triggered only when the current window is saturated. A preliminary version
of GeoBurst+ is introduced in [41]. However, the GeoBurst method proposed in [41] does not
leverage embedding learning to capture short-text semantics and is meanwhile unsupervised. The
embedding learner, the classi�cation procedure, and the more systematic evaluations are all new in
this paper.

7.3 Local Event Forecasting

Local event forecasting is another line of research that is related to our problem. Foley et al. [10]
use distant supervision to extract future local events from Web pages, but the proposed method
can only extract local events that are well advertised in advance on the Web. Muthiah et al. [26]
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and Zhao et al. [43], [44], [42] have developed a bunch of methods and the EMBERS system for
forcasting local events. They formulate local event forecasting as a binary prediction problem,
i.e., predicting whether a speci�c type of event (e.g., civil unrest) will occur on a given day. Their
methods combine social media with other data sources (e.g., gold standard report, news articles) to
train reliable predictors. Our problem is orthogonal to their studies in that, instead of performing
binary prediction for a speci�c event type, we attempt to extract all types of local events from the
geo-tagged tweet data alone.

8 CONCLUSION

We studied the problem of real-time local event detection in geo-tagged tweet streams. We proposed
theGeoBurst+ detector. To the best of our knowledge,GeoBurst+ is the �rst method that is capable
of extracting highly interpretable local events in real time. GeoBurst+ �rst generates candidate
events based on a novel pivot seeking process, and then leverages the continuous summarization
of the stream as background knowledge to classify the candidates. Our extensive experiments have
demonstrated that GeoBurst+ is highly e�ective and e�cient. The usage of GeoBurst+ is not
limited to Twitter. Rather, any geo-textual social media stream (e.g., Instagram photo tags, Facebook
posts) can use GeoBurst+ to extract interesting local events as well.
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