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ABSTRACT
We study the open-domain named entity recognition (NER) prob-
lem under distant supervision. The distant supervision, though does
not require large amounts of manual annotations, yields highly in-
complete and noisy distant labels via external knowledge bases. To
address this challenge, we propose a new computational framework
– BOND, which leverages the power of pre-trained languagemodels
(e.g., BERT and RoBERTa) to improve the prediction performance
of NER models. Specifically, we propose a two-stage training algo-
rithm: In the first stage, we adapt the pre-trained language model
to the NER tasks using the distant labels, which can significantly
improve the recall and precision; In the second stage, we drop
the distant labels, and propose a self-training approach to further
improve the model performance. Thorough experiments on 5 bench-
mark datasets demonstrate the superiority of BOND over existing
distantly supervised NER methods. The code and distantly labeled
data have been released in https://github.com/cliang1453/BOND.
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1 INTRODUCTION
Named Entity Recognition (NER) is the task of detecting mentions
of real-world entities from text and classifying them into prede-
fined types (e.g., locations, persons, organizations). It is a core task
in knowledge extraction and is important to various downstream
applications such as user interest modeling [13], question answer-
ing [14] and dialogue systems [2]. Traditional approaches to NER
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mainly train statistical sequential models, such as Hidden Markov
Model (HMM) [47] and Conditional Random Field (CRF) [16] based
on hand-crafted features. To alleviate the burden of designing hand-
crafted features, deep learning models [11, 25] have been proposed
for NER and shown strong performance. However, most deep learn-
ing methods rely on large amounts of labeled training data. As
NER tasks require token-level labels, annotating a large number
of documents can be expensive, time-consuming, and prone to hu-
man errors. In many real-life scenarios, the lack of labeled data has
become the biggest bottleneck that prevents deep learning models
from being adopted for NER tasks.

To tackle the label scarcity issue, one approach is to use distant
supervision to generate labels automatically. In distant supervision,
the labeling procedure is to match the tokens in the target corpus
with concepts in knowledge bases (e.g. Wikipedia1 and YAGO2),
which are usually easy and cheap to access. Nevertheless, the labels
generated by the matching procedure suffer from two major chal-
lenges. The first challenge is incomplete annotation, which is caused
by the limited coverage of existing knowledge bases. Take two com-
mon open-domain NER datasets as examples. From Table 1, we find
that the coverage of tokens on both datasets is very low (less than
60%). This issue renders many entities mentions unmatched and
produces many false-positive labels, which can hurt subsequent
NER model training significantly. The second challenge is noisy
annotation. The annotation is often noisy due to the labeling ambi-
guity – the same entity mention can be mapped to multiple entity
types in the knowledge bases. For instance, the entity mention
’Liverpool’ can be mapped to both ’Liverpool City’ (type: LOC) and
’Liverpool Football Club’ (type: ORG) in the knowledge base. While
existing methods adopt label induction methods based on type pop-
ularity, they will potentially lead to a matching bias toward popular
types. Consequently, it can lead to many false-positive samples and
hurt the performance of NER models. What’s worse, there is often
a trade-off between the label accuracy and coverage: generating the
high-quality label requires setting strict matching rules which may
not generalize well for all the tokens and thus reduce the coverage
and introduce false-negative labels. On the other hand, increasing
the coverage of annotation suffers from the increasing number of
incorrect labels due to label ambiguity. From the above, it is still
very challenging to generate high-quality labels with high coverage
to the target corpus.

Several studies have attempted to address the above challenges
in distantly-supervised NER. To address the label incompleteness
issue, some works adopt the partial annotation CRFs to consider all
possible labels for unlabeled tokens [36, 45], but they still require

1https://www.wikipedia.org/
2https://www.mpi-inf.mpg.de/departments/databases-and-information-
systems/research/yago-naga/yago/
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a considerable amount of annotated tokens or external tools. To
address the label noise issue, Ni et al. [28] use heuristic rules to filter
out sentences with low matching quality. However, this filtering
strategy improves the precision at the expense of lowering the recall.
Cao et al. [3] attempt to induce labels for entity mentions based on
their occurrence popularity in the concept taxonomy, which can
suffer from labeling bias and produce mislabeled data. Moreover,
most of the methods mainly focus on NER tasks in specific domains
(e.g. biomedical, chemistry, etc.) where the ambiguity of the named
entity is very low. When the matching ambiguity issue is more
severe, such methods will be less effective especially under open-
domain scenarios. Till now, training open-domain NER models with
distant supervision remains a challenging problem.

We propose our model BOND, short for Bert-Assisted Open-
DomainNamed entity recognition withDistant Supervision, which
learns accurate named entity taggers from distant supervision with-
out any restriction on the domain or the content of the corpora. To
address the challenges in learning from distant supervision, our
approach leverages the power of pre-trained language models (e.g.,
ELMo [30], BERT [6], XLnet [46]) which are particularly attrac-
tive to this task due to the following merits: First, they are very
large neural networks trained with huge amounts of unlabeled
data in a completely unsupervised manner, which can be cheaply ob-
tained; Second, due to their massive sizes (usually having hundreds
of millions or billions of parameters), they have strong expressive
power to capture general semantics and syntactic information ef-
fectively. These language models have achieved state-of-the-art
performance in many popular NLP benchmarks with appropriate
fine-tuning [6, 18, 23, 31, 46], which demonstrates their strong
ability in modeling the text data.

To fully harness the power of pre-trained language models for
tackling the two challenges, we propose a two-stage training frame-
work. In the first stage, we fine-tune the RoBERTa model [23] with
distantly-matched labels to essentially transfer the semantic knowl-
edge in RoBERTa, which will improve the quality of prediction
induced from distant supervision. It is worth noting that we adopt
early stopping to prevent the model from overfitting to the incom-
plete annotated labels3 and significantly improve the recall. Then
we use the RoBERTa model to predict a set of pseudo soft-labels for
all data. In the second stage, we replace the distantly-matched labels
with the pseudo soft-labels and design a teacher-student framework
to further improve the recall. The student model is first initialized
by the model learned in the first stage and trained using pseudo
soft-labels. Then, we update the teacher model from the student
model in the previous iteration to generate a new set of pseudo-
labels for the next iteration to continue the training of the student
model. This teacher-student framework enjoys the merit that it pro-
gressively improves the model confidence over data. In addition,
we select samples based on the prediction confidence of the student
model to further improve the quality of soft labels. In this way, we
can better exploit both the knowledge base information and the
language models and improve the model fitting.

Our proposed method is closely related to low-resource NER and
semi-supervised learning. We discuss more details in Section 5. We
summarize the key contributions of our work as follows:

3Here the incomplete annotated labels refer to tokens wrongly labeled as type ’O’.

• We demonstrate that the pre-trained language model can also
provide additional semantic information during the training process
and reduce the label noise for distantly-supervised named entity
recognition. To the best of our knowledge, this is the first work that
leverages the power of pre-trained languagemodel for open-domain
NER tasks with distant supervision.
•We design a two-stage framework to fully exploit the power of
language models in our task. Specifically, we refine the distant
label iteratively with the language model in the first stage and
improve the model fitting under the teacher-student framework in
the second stage, which is able to address the challenge of noisy
and incomplete annotation.
• We conduct comprehensive experiments on 5 datasets for named
entity recognition tasks with distant supervision. Our proposed
method significantly outperforms state-of-the-art distantly super-
vised NER competitors in all 5 datasets (4 of which by significant
margins).

2 PRELIMINARIES
We briefly introduce the distantly-supervised NER problem and the
pre-trained language models.

2.1 Distantly Supervised NER
NER is the process of locating and classifying named entities in
text into predefined entity categories, such as person names, orga-
nizations, locations, etc. Formally, given a sentence with 𝑁 tokens
𝑿 = [𝑥1, ..., 𝑥𝑁 ], an entity is a span of tokens 𝒔 = [𝑥𝑖 , ..., 𝑥 𝑗 ] (0 ≤
𝑖 ≤ 𝑗 ≤ 𝑁 ) associated with an entity type. Based on the BIO
schema [19], NER is typically formulated as a sequence labeling
task of assigning a sequence of labels 𝒀 = [𝑦1, ..., 𝑦𝑁 ] to the sen-
tence 𝑿 . Specifically, the first token of an entity mention with type
X is labeled as B-X; the other tokens inside that entity mention are
labeled as I-X; and the non-entity tokens are labeled as O.

For (fully) supervised NER, we are given 𝑀 sentences that are
already annotated at token level, denoted as {(𝑿𝑚, 𝒀𝑚)}𝑀

𝑚=1. Let
𝑓 (𝑿 ;𝜃 ) denote an NER model, which can compute 𝑁 probability
simplexes for predicting the entity labels of any new sentence 𝑿 ,
where 𝜃 is the parameter of the NER model. We train such a model
by minimizing the following loss over {(𝑿𝑚, 𝒀𝑚)}𝑀

𝑚=1:

𝜃 = argmin
𝜃

1
𝑀

M∑
𝑚=1

ℓ (𝒀𝑚, 𝑓 (𝑿𝑚 ;𝜃 )), (1)

where ℓ (·, ·) is the cross-entropy loss.
For distantly-supervised NER, we do not have access to well-

annotated true labels, but only distant labels generated by matching
unlabeled sentences with external gazetteers or knowledge bases
(KBs). The matching can be achieved by string matching [9], reg-
ular expressions [8] or heuristic rules (e.g., POS tag constraints).
Accordingly, we learn an NER model by minimizing Eq. (1) with
{𝒀𝑚}𝑀

𝑚=1 replaced by their distantly labeled counterparts.

Challenges. The labels generated by distant supervision are often
noisy and incomplete. This is particularly true for open-domain
NER where there is no restriction on the domain or the content of
the corpora. Fries et al. [8] and Giannakopoulos et al. [9] have pro-
posed distantly-supervised NER methods for specific domains (e.g.,



Table 1: Existing Gazetteer Matching Performance on Open-
Domain [35, 37] and Biomedical Domain NER Datasets [36]

Metric Open-Domain Biomedical Domains
CoNLL03 Tweet BC5CDR NCBI-Disease

Entity Types 4 10 2 1
F-1 59.61 35.83 71.98 69.32

Precision 71.91 40.34 93.93 90.59
Recall 50.90 32.22 58.35 56.15

biomedical domain), where the adopted domain-specific gazetteers
or KBs are often of high matching quality and yield high preci-
sion and high recall distant labels. For the open domain, however,
the quality of the distant labels is much worse, as there is more
ambiguity and limited coverage over entity types in open-domain
KBs. Table 1 illustrates the matching quality of distant labels on
the open-domain and the biomedical-domain datasets. As can be
seen, the distant labels for the open-domain datasets suffer from
much lower precision and recall. This imposes great challenges to
training accurate NER models.

2.2 Pre-trained Language Model
Pre-trained language models, such as BERT and its variants (e.g.,
RoBERTa [23], ALBERT [18] and T5 [31]), have achieved state-
of-the-art performance in many natural language understanding
tasks [12]. These models are essentially massive neural networks
based on bi-directional transformer architectures, and are trained
using open-domain data in a completely unsupervised manner. The
stacked self-attention modules of the transformer architectures can
capture deep contextual information, and their non-recurrent struc-
tures enable the training to scale to large amounts of open-domain
data. For example, the popular BERT-base model contains 110 mil-
lion parameters, and is trained using the BooksCorpus [48] (800
million words) and English Wikipedia (2500 million words). More
importantly, many pre-trained language models have been publicly
available online. One does not need to train them from scratch.
When applying pre-trained language models to downstream tasks,
one only needs to slightly modify the model and adapt the model
through efficient and scalable stochastic gradient-type algorithms.

3 TWO-STAGE FRAMEWORK: BOND
We introduce our proposed two-stage framework–BOND. In the
first stage of BOND, we adapt the BERT model to the distantly
supervised NER task. In the second stage, we use a self-training
approach to improve the model fitting to the training data. We
summarize the BOND framework in Figure 1.

3.1 Stage I: BERT-Assisted Distantly Supervised
Learning with Early Stopping

Before proceeding with our proposed method, we briefly introduce
how we generate distant labels for open-domain NER tasks. Our
label generation scheme contains two steps: We first identify po-
tential entities by POS tagging and hand-crafted rules. We then
query from Wikidata to identify the types of these entities using
SPARQL [40] as illustrated in Figure 2. We next collect gazetteers
from multiple online resources to match more entities in the data
[35]. Please refer to the appendix for more technical details.

We then proceed with our proposed method. We use 𝑓 (·;𝜃 )
to denote the NER model parameterized by 𝜃 , 𝑓𝑛,𝑐 (·; ·) to denote
the probability of the 𝑛-th token belonging to the 𝑐-th class, and
{(𝑿𝑚,𝑫𝑚)}𝑀

𝑚=1 to denote the distantly labeled data, where 𝑫𝑚 =

[𝑑𝑚,1, ..., 𝑑𝑚,𝑁 ] and 𝑿𝑚 = [𝑥𝑚,1, ..., 𝑥𝑚,𝑁 ]. The NER model 𝑓 (·;𝜃 )
is learned by minimizing the loss over {(𝑿𝑚,𝑫𝑚)}𝑀

𝑚=1:

𝜃 = argmin
𝜃

1
𝑀

𝑀∑
𝑚=1

ℓ (𝑫𝑚, 𝑓 (𝑿𝑚 ;𝜃 )), (2)

where ℓ (𝑫𝑚, 𝑓 (𝑿𝑚 ;𝜃 )) = 1
𝑁

∑𝑁
𝑛=1 − log 𝑓𝑛,𝑑𝑚,𝑛

(𝑿𝑚 ;𝜃 ).
The architecture of the NER model 𝑓 (·, ·) is a token-wise NER

classifier on top of a pre-trained BERT, as shown in Figure 3. The
NER classifier takes in the token-wise output embeddings from the
pre-trained BERT layers, and gives the prediction on the type for
each token. The pre-trained BERT contains rich semantic and syntax
knowledge, and yields high quality output embeddings. Using such
embeddings as the initialization, we can efficiently adapt the pre-
trained BERT to the target NER task using stochastic gradient-type
algorithms, e.g., ADAM [15, 22]. Following [31], our adaptation pro-
cess updates the entire model including both the NER classification
layer and the pre-trained BERT layers.

Algorithm 1: Stage I: BERT-Assisted Distantly Supervised
Learning with Early Stopping

Input:𝑀 unlabeled sentences, {𝑿𝑚}𝑀
𝑚=1; External KBs

including Wikidata and multi-source gazetteers; The
NER model with pre-trained BERT layers 𝑓 (·;𝜃 (0) );
The early stopping time 𝑇1; The updating formula of
ADAM T .

// Distant Label Generation (DLG)

{𝑫𝑚}𝑀𝑚=1 = Matching({𝑿𝑚,𝑫𝑚}𝑀𝑚=1;External KBs)
// Model Adaptation
for 𝑡 = 1, 2, ...,𝑇1 do

Sample a minibatch B𝑡 from {(𝑿𝑚,𝑫𝑚)}𝑀
𝑚=1 .

Update the model using ADAM:
𝜃 (𝑡 ) = T (𝜃 (𝑡−1) ,B𝑡 ) .

Output: The early stopped model: 𝜃 = 𝜃 (𝑇1)

Figure 4 illustrates how the pre-trained BERT embeddings help
the model adapt to distantly supervised NER tasks. We highlight
that BERT is pre-trained through a masked language model (MLM)
task, and is capable of predicting the missing words using the con-
textual information. Such a MLM task shares a lot of similarity with
the NER task. Both of them are token-wise classification problems
and heavily rely on the contextual information (see Figure 3). This
naturally enables the semantic knowledge of the pre-trained BERT
to be transferred to the NER task. Therefore, the resulting model
can better predict the entity types than those trained from scratch
using only the distantly labeled data.

Early Stopping. One important strategy we use in the adaptation
process is early stopping. Due to the large model capacity as well as
the limited and noisy supervision (distant labels), our NER model
can overfit the noise in distant labels and forget the knowledge



ID Sentence

1 “It appears that August is showing an economy
again reversing course“, said economist Lynn
Reaser of Barnett Banks Inc. in Jacksonville.

2 Adilson Varela, commonly known as Cabral, is a
footballer from Switzerland who plays as
midfielder for FC Basel.

… …

Unlabeled 
Training Data

Knowledge Bases Multi-source
Gazetteers

Lynn Reaser
Adilson Valera

Jacksonville

PER
PER
LOC

Barnett Banks Inc
Cabral

FC Basel

ORG
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ORG

Generate Distantly Labeled Data Training Instances

Adilson Varela, commonly 
known as Cabral, …

BERT

Classification Head
Distant 
Labels

Stage I: BERT-Assisted Distantly Supervised Learning with Early Stopping

Training Instances

Adilson Varela, commonly 
known as Cabral, …

BERT

Classification Head

BERT

Classification Head

Iteratively Update

initialization
Student Model Teacher Model

Pseudo
Label

B-PER  I-PER    O        O O B-PER … 

Stage II: Self-training
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Labels

Figure 1: The two-stage BOND framework. In Stage I, the pre-trained BERT is adapted to the distantly supervised NER task
with early stopping. In Stage II, a student model and a teacher model are first initialized from the model learned in Stage
I. Then the student model is trained using pseudo-labels generated by the teacher model. Meanwhile, the teacher model is
iteratively updated by the early-stopped student.

Figure 2: Illustration of matching entities fromWikidata

BERT

MLM Classification Head

…  economist   <MASK> <MASK> of       Barnett  …

Lynn      Reaser

BERT
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…  economist    Lynn      Reaser of       Barnett  …

…         O      <B-PER>  <I-PER> O      <B-ORG>  …

Transfer
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Figure 3: Pre-trained Mask Language Model vs. NER Model

of the pre-trained BERT if without any intervention. Early stop-
ping essentially serves as a strong regularization to prevent such
overfitting and improves generalization ability to unseen data.
Remark 1. Stage I addresses both of the two major challenges in
distantly supervised NER tasks: noisy annotation and incomplete
annotation. As the semantic knowledge in the pre-trained BERT is
transferred to the NER model, the noise is suppressed such that the
prediction precision is improved. Moreover, early stopping prevents
the model from overfitting the incomplete annotated labels and
further improves the recall.
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Model OutputSample Point

Model Output

Embedding 
Space

Positive

Negative

Embedding 
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Negative

Pre-trained
BERT
Embedding

Early Stopping

Overfitting

Figure 4: Illustration of Stage I. Top) The pre-trained se-
mantic knowledge is transferred to the NER task; Middle)
Early stopping leverages the pre-trained knowledge and
yields better prediction; Bottom) Without early stopping,
the model overfits the noise. The token embeddings are
evolving, as we update the pre-trained BERT layers.

3.2 Stage II: Self-Training
We first describe a teacher-student framework of self-training to im-
prove the model fitting, and then we propose to use high-confidence
soft labels to further improve the self-training.

3.2.1 The Teacher-student Framework. Weuse 𝑓 (·;𝜃tea) and 𝑓 (·;𝜃stu)
to denote teacher and student models, respectively. Given the model
learned in Stage I, 𝑓 (·;𝜃 ), one option is to initialize the teacher
model and the student model as:

𝜃
(0)
tea = 𝜃

(0)
stu = 𝜃,



and another option is

𝜃
(0)
tea = 𝜃 and 𝜃

(0)
stu = 𝜃BERT, (3)

where 𝜃BERT denotes the initial model with the pre-trained BERT
layers used in Stage I. For simplicity, we refer the second option to
“re-initialization”.

At the 𝑡-th iteration, the teacher model generates pseudo labels
{�̃� (𝑡 )

𝑚 = [𝑦 (𝑡 )
𝑚,1, ..., 𝑦

(𝑡 )
𝑚,𝑁

]}𝑀
𝑚=1 by

𝑦
(𝑡 )
𝑚,𝑛 = argmax

𝑐
𝑓𝑛,𝑐 (𝑿𝑚 ;𝜃 (𝑡 )tea ) . (4)

Then the student model fits these pseudo-labels. Specifically, given
the teacher model 𝑓 (·;𝜃 (𝑡 )tea ), the student model is learned by solving

𝜃
(𝑡 )
stu = argmin

𝜃

1
𝑀

𝑀∑
𝑚=1

ℓ (�̃� (𝑡 )
𝑚 , 𝑓 (𝑿𝑚 ;𝜃 )) . (5)

We then use ADAM to optimize Eq. (5) with early stopping. At
the end of 𝑡-th iteration, we update the teacher model and the
student model by:

𝜃
(𝑡+1)
tea = 𝜃

(𝑡+1)
stu = 𝜃

(𝑡 )
stu .

The algorithm is summarized in Algorithm 2.

Algorithm 2: Stage II: Self-Training

Input:𝑀 training sentences, {𝑿𝑚}𝑀
𝑚=1; The early stopped

model obtained in Stage I, 𝑓 (·;𝜃 ); The number of
self-training iterations 𝑇2; The early stopping time
𝑇3; The updating formula of ADAM T .

Initialize the teacher model and the student model:

𝜃
(0)
tea = 𝜃

(0)
stu = 𝜃 .

for 𝑡 = 1, 2, ...𝑇2 do
𝜃
(𝑡,0)
stu = 𝜃

(𝑡 )
stu .

for 𝑘 = 1, 2, ...,𝑇3 do
Sample a minibatch B𝑘 from {𝑿𝑚}𝑀

𝑚=1 .
Generate pseudo-labels {�̃�𝑚}𝑚∈B𝑘

by Eq. (4).
Update the student model:

𝜃
(𝑡,𝑘)
stu = T (𝜃 (𝑡,𝑘−1)stu , {(𝑿𝑚, �̃�𝑚)}𝑚∈B𝑘

).
Update the teacher and student:

𝜃
(𝑡 )
tea = 𝜃

(𝑡 )
stu = 𝜃

(𝑡,𝑇3)
stu .

Output: The final student model: 𝜃 (𝑇2)

Remark 2. Note that we discard all pseudo-labels from the (𝑡-1)-
th iteration, and only train the student model using pseudo-labels
generated by the teacher model at the 𝑡-th iteration. Combined
with early stopping, such a self-training approach can improve the
model fitting and reduce the noise of the pseudo-labels as illustrated
in Figure 5. With progressive refinement of the pseudo-labels, the
student model can gradually exploit knowledge in the pseudo-labels
and avoid overfitting.
Remark 3. Our teacher-student framework is quite general, and
can be naturally combined with other training techniques, e.g.,
mean teacher [38] and virtual adversarial training [27]. Please refer
to Section 5 for more detailed discussions.

Figure 5: Illustration of self-training. The self-training can
gradually reduce the noise of the pseudo-labels and improve
model fitting.

3.2.2 Re-weighted High-Confidence Soft Labels. The hard pseudo-
labels generated by Eq. (4) only keeps the most confident class for
each token. To avoid losing too much information of other classes,
we propose to use soft labels with confidence re-weighting.

Recall that for the 𝑛-th token in the𝑚-th sentence, the output
probability simplex over 𝐶 classes is denoted as

[𝑓𝑛,1 (𝑿𝑚 ;𝜃 ), ..., 𝑓𝑛,𝐶 (𝑿𝑚 ;𝜃 )] .
At the 𝑡-th iteration, the teacher model generates soft pseudo-labels
{𝑺 (𝑡 )𝑚 = [𝒔 (𝑡 )𝑚,𝑛]𝑁𝑛=1}

𝑀
𝑚=1 following [43]:

𝒔 (𝑡 )𝑚,𝑛 = [𝑠 (𝑡 )𝑚,𝑛,𝑐 ]𝐶𝑐=1 =
[

𝑓 2𝑛,𝑐 (𝑿𝑚 ;𝜃 (𝑡 )tea )/𝑝𝑐∑𝐶
𝑐′=1 𝑓

2
𝑛,𝑐′ (𝑿𝑚 ;𝜃 (𝑡 )tea )/𝑝𝑐′

]𝐶
𝑐=1

(6)

where 𝑝𝑐 =
∑𝑀
𝑚=1

∑𝑁
𝑛=1 𝑓𝑛,𝑐 (𝑿𝑚 ;𝜃 (𝑡 )tea ) calculates the unnormalized

frequency of the tokens belonging to the 𝑐-th class. As can be seen,
such a squared re-weighting step in Eq. (6) essentially favors the
classes with higher confidence. The student model 𝑓 (·;𝜃 (𝑡 )stu ) is then
optimized by minimizing

𝜃
(𝑡 )
stu = argmin

𝜃

1
𝑀

𝑀∑
𝑚=1

ℓKL (𝑺 (𝑡 )𝑚 , 𝑓 (𝑿𝑚 ;𝜃 )),

where ℓKL (·, ·) denotes the KL-divergence-based loss:

ℓKL (𝑺 (𝑡 )𝑚 , 𝑓 (𝑿𝑚 ;𝜃 )) = 1
𝑁

𝑁∑
𝑛=1

𝐶∑
𝑐=1

−𝑠 (𝑡 )𝑚,𝑛,𝑐 log 𝑓𝑛,𝑐 (𝑿𝑚 ;𝜃 ). (7)

High-Confidence Selection. To further address the uncertainty
in the data, we propose to select tokens based on the prediction
confidence. Specifically, at the 𝑡-th iteration, we select a set of high
confidence tokens from the𝑚-th sentence by

𝐻
(𝑡 )
𝑚 = {𝑛 : max

𝑐
𝑠
(𝑡 )
𝑚,𝑛,𝑐 > 𝜖}, (8)

where 𝜖 ∈ (0, 1) is a tuning threshold. Accordingly, the student
model 𝑓 (·;𝜃 (𝑡 )stu ) can be optimized by minimizing the loss only over
the selected tokens:

𝜃
(𝑡 )
stu = argmin

𝜃

1

𝑀 |𝐻 (𝑡 )
𝑚 |

𝑀∑
𝑚=1

∑
𝑛∈𝐻 (𝑡 )

𝑚

𝐶∑
𝑐=1

−𝑠 (𝑡 )𝑚,𝑛,𝑐 log 𝑓𝑛,𝑐 (𝑿𝑚 ;𝜃 ) .



The high confidence selection essentially enforces the student
model to better fit tokens with high confidence, and therefore is able
to improve the model robustness against low-confidence tokens.

4 EXPERIMENTS
We conduct a series of experiments to demonstrate the superiority
of our proposed method.

4.1 Experimental Setup
4.1.1 Datasets. We consider the followingNER benchmark datasets:
(i) CoNLL03 [39] is a well-known open-domain NER dataset from
the CoNLL 2003 Shared Task. It consists of 1393 English news
articles and is annotated with four entity types: person, location, or-
ganization, and miscellaneous. (ii) Twitter [10] is from the WNUT
2016 NER shared task. This is an open-domain NER dataset that
consists of 2400 tweets (comprising 34k tokens) with 10 entity types.
(iii) OntoNotes5.0 [41] contains text documents from multiple do-
mains, including broadcast conversation, P2.5 data and Web data.
It consists of around 1.6 millions words and is annotated with 18
entity types. (iv) Wikigold [1] is a set of Wikipedia articles (40k
tokens) randomly selected from a 2008 English dump and manually
annotated with the four CoNLL03 entity types. (v)Webpage [33]
is an NER dataset that contains personal, academic, and computer
science conference webpages. It consists of 20 webpages that cover
783 entities belonging to the four types the same as CoNLL03.

For distant labels generation, we match entity types in exter-
nal KBs including Wikidata corpus and gazetteers collected from
multiple online sources. The data sources and matching details are
described in the appendix.

4.1.2 Baselines. We compare our model with different groups of
baseline methods.
• KB Matching. The first baseline performs string matching with
external KBs using the mechanism described in the appendix.
• Fully-supervised Methods. We also include fully-supervised
NER methods for comparison, including: (i) RoBERTa-base [23]—
it adopts RoBERTa model with linear layers to perform token-level
prediction; (ii) BiLSTM-CRF [25] adopts bi-directional LSTM with
character-level CNN to produce token embeddings, which are fed
into a CRF layer to predict token labels.
• Distantly-supervised Methods. The third group of baselines
are recent deep learning models for distantly-supervised NER, in-
cluding: (i) BiLSTM-CRF [25] is trained using the distant labels
matched fromKBs; (ii)AutoNER [36] trains themodel by assigning
ambiguous tokens with all possible labels and then maximizing the
overall likelihood using a fuzzy LSTM-CRF model; (iii) LRNT [3] is
the state-of-the-art model for low-resource named tagging, which
applies partial-CRFs on high-quality data with non-entity sampling.
When comparing with these distantly supervised methods, we use
the same distant labels as the training data for fair comparison.
• Baselines with Different Settings. The following methods
also conduct open-domain NER under distant supervision. We re-
mark that they use different KBs and extra training data. There-
fore, we only compare with the results reported in their papers. (i)
KALM [21] augments a traditional language model with a KB and
use entity type information to enhance the model. (ii) ConNET [17]
leverages multiple crowd annotation and dynamically aggregates

them by attention mechanism. It learn from imperfect annotations
from multiple sources.4
• For Ablation Study, we consider the following methods/tricks.
(i)MT [38] uses Mean Teacher method to average model weights
and forms a target-generating teacher model. (ii) VAT [27] adopts
virtual adversarial training to smooth the output distribution to
make the model robust to noise. (iii)Hard Label generates pseudo-
labels using Eq. (4). (iv) Soft Label generates pseudo-labels using
Eq. (6). (v)Reinitialization initializes the student and teacher mod-
els using Eq. (3). (vi) High-Confidence Selection selects tokens
using Eq. (8).

4.2 Experimental Results
Our NER model use RoBERTa-base as the backbone. A linear classi-
fication layer is build up on the RoBERTa-base model. Please refer
to the appendix for implementation details.
4.2.1 Main Results. Table 2 presents the 𝐹1 scores, precision and
recall for all methods. Note that our implementations of the fully
supervised NER methods attain very close to the state-of-the-art
performance [6, 20]. Our results are summarized as follows:
• For all five datasets, our method consistently achieves the best
performance under the distant supervision scenarios, in 𝐹1 score,
precision and recall. In particular, our method outperforms the
strongest distantly supervised NER baselines by {11.74, 21.91, 0.66,
14.35, 12.53} in terms of 𝐹1 score. These results demonstrate the
significant superiority of our proposed method.
• The standard adaptation of pre-trained language models have
already demonstrated remarkable performance. The models ob-
tained by the Stage I of our methods outperform the strongest
distantly supervised NER baselines by {5.87, 20.51, 0.42, 7.72, 4.01}
in terms of 𝐹1 score. The Stage II of our methods further improves
the performance of the Stage I by {5.87, 1.4, 0.24, 6.63, 8.52}.
•OnCoNLL03 dataset, compared with baselines which use different
sources – KALM and ConNET, our model also outperforms them by
significant margins. More detailed technical comparisons between
our method and them are provided in Section 5.

4.2.2 Ablation Study. To gain insights of our two-stage frame-
work, we investigate the effectiveness of several components of our
method via ablation study. The table 3 shows the results on both
CoNLL03 and Wikigold datasets. Our results can be summarized as
follows:
• For Stage I, Pre-trained Language Models significantly im-
prove both precision and recall for both datasets. Specifically, when
training the NER model from scratch, the F1 scores of the output
model of Stage I drop from 75.61 to 36.66 on CoNLL03, and from
51.55 to 18.31 on Wikigold. This verifies that the rich semantic and
contextual information in pre-trained RoBERTa has been success-
fully transferred to our NER model in Stage I.
• For Stage I, Early stopping improves both precision and recall
for both datasets. We increase the training iterations from 900 to
18000 on CoNLL03 and from 350 to 7000 on Wikigold, and the F1
scores of the output model of Stage I drop from 75.61 to 72.11 on

4For KALM and ConNET model, the KB and crowd annotation are not public available,
and thus we are unable to reproduce the results.



Table 2: Main Results on Testing Set: 𝐹1 Score (Precision/Recall) (in %)

Method CoNLL03 Tweet OntoNote5.0 Webpage Wikigold
Entity Types 4 10 18 4 4
KB Matching 71.40(81.13/63.75) 35.83(40.34/32.22) 59.51(63.86/55.71) 52.45(62.59/45.14) 47.76(47.90/47.63)
Fully-Supervised (Our implementation)
RoBERTa 90.11(89.14/91.10) 52.19(51.76/52.63) 86.20(84.59/87.88) 72.39(66.29/79.73) 86.43(85.33/87.56)
BiLSTM-CRF 91.21(91.35/91.06) 52.18(60.01/46.16) 86.17(85.99/86.36) 52.34(50.07/54.76) 54.90(55.40/54.30)
Baseline (Our implementation)
BiLSTM-CRF 59.50(75.50/49.10) 21.77(46.91/14.18) 66.41(68.44/64.50) 43.34(58.05/34.59) 42.92(47.55/39.11)
AutoNER 67.00(75.21/60.40) 26.10(43.26/18.69) 67.18(64.63/69.95) 51.39(48.82/54.23) 47.54(43.54/52.35)
LRNT 69.74(79.91/61.87) 23.84(46.94/15.98) 67.69(67.36/68.02) 47.74(46.70/48.83) 46.21(45.60/46.84)
Other Baseline (Reported Results)
KALM † 76.00( --- / --- ) --- --- --- ---
ConNET ⋄ 75.57(84.11/68.61) --- --- --- ---
Our BOND Framework
Stage I 75.61(83.76/68.90) 46.61(53.11/41.52) 68.11(66.71/69.56) 59.11(60.14/58.11) 51.55(49.17/54.50)
BOND 81.48(82.05/80.92) 48.01(53.16/43.76) 68.35(67.14/69.61) 65.74(67.37/64.19) 60.07(53.44/68.58)

Note: †: KALM achieves better performance when using extra data. ⋄: ConNET studies NER under a crowd sourcing setting, where the
best human annotator achieves 𝐹1 score at 89.51.

CoNLL03, and from 51.55 to 49.68 on Wikigold. This verifies that
Early Stopping eases the overfitting and improves the generalization
ability of our NER model.
• For Stage II, Soft labels improve the 𝐹1 score and recall on
both datasets. Specifically, the 𝐹1 scores and recall increase from
77.28/71.98 to 80.18/78.84 on CoNLL03, and from 56.90/59.74 to
58.64/65.79 on Wikigold. Moreover, the precision on Wikigold is
also improved. This verifies that the soft labels preserve more in-
formation and yield better fitted models than those of the hard
labels.
• For stage II,High-Confidence Selection improves the 𝐹1 scores
on both datasets. Specifically, compared with using soft labels, the
𝐹1 scores and recall increase from 81.56/78.84 to 80.18/72.31 on
CoNLL03, and from 58.64/59.74 to 60.07/68.58 on Wikigold. Be-
sides, the precision on CoNLL03 is also improved. This verifies that
the high-confidence labels help select data and yield more robust
performance.
• For Stage II, Re-initialization improves both precision and re-
call, only when the hard labels are adopted. We believe that this
is because the hard labels lose too much information about data
uncertainty, re-initializing the RoBERTa layers restores semantic
and contextual information, and can compensate such loss.

In contrast, when soft labels are adopted, Re-initialization de-
teriorates both precision and recall. We believe that this is because
the soft label retains sufficient information (i.e., the knowledge
transferred from RoBERTa and learned from the distant labels). As
a result, re-initialization only leads to underfitting on the data.

Moreover, we also consider Multiple Re-initialization, and
observe similar results.
• Mean Teacher and Virtual Adversarial Training can be nat-
urally integrated into our versatile teacher-student framework by
adding an additional MT teacher or a VAT teacher. VAT marginally
improves the F1 scores on both datasets. MT marginally improves
the F1 scores onWikigold, and deteriorates the 𝐹1 scores onCoNLL03.

Table 3: Ablation Study: 𝐹1 Score (Precision/Recall) (in %)

Method CoNLL03 Wikigold
Stage I
Stage I 75.61(83.76/68.90) 51.55(49.17/54.50)
Stage I w/o pre-train 36.66(37.49/35.75) 18.31(18.14/18.50)
Stage I w/o early stop 72.11(81.65/64.57) 49.68(48.67/50.74)
Stage I w/ MT 76.30(82.92/70.67) 46.68(49.82/43.91)
Stage I w/ VAT 76.38(82.58/71.04) 47.54(50.02/45.30)
Stage I + Stage II
BOND † 77.28(83.42/71.98) 56.90(54.32/59.74)
BOND w/ soft 80.18(81.56/78.84) 58.64(58.29/65.79)
BOND w/ soft+high conf 81.48(82.05/80.92) 60.07(53.44/68.58)
BOND w/ reinit 78.17(85.05/72.31) 58.55(55.31/62.19)
BOND w/ soft+reinit 76.92(83.39/71.38) 54.09(50.72/57.94)
BOND w/ MT 77.16(82.79/72.25) 57.93(55.66/60.39)
BOND w/ VAT 77.64(85.62/70.69) 57.39(55.05/59.41)

Note†: We use BOND to denote our two-stage framework using
hard pseudo-labels in this table for clarity.

We believe that this is because MT and VAT perform well with
high quality labels, however, the labels in our NER tasks are not
very precise.
4.2.3 Parameter Study. We investigate the effects of the early stop-
ping time of Stage I –𝑇1, the early stopping time of Stage II–𝑇3, and
confidence threshold 𝜖 for selecting tokens using CoNLL03 data.
The default values are 𝑇1 = 900,𝑇3 = 1800, 𝜖 = 0.9. The learning
curves are summarized in Figure 6:
• Both 𝑇1 and 𝑇3 reflect trade-offs between precision and recall of
the Stage I and Stage II, respectively. This verifies the importance
of early stopping. The model performance is sensitive to 𝑇1, and
less sensitive to 𝑇3.
• The recall increases along with 𝜖 . The precision shows a different
behavior: it first decreases and then increases.
• We also consider a scenario, where 𝑇3 is allowed to tune for each
iteration of the Stage II. This requires more computational resource
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than the setting where 𝑇3 remains the same for all iterations. This
can further improve the model performance to 83.49, 84.09, 82.89
in terms of 𝐹1 scores, precision and recall, respectively.
4.2.4 Case Study and Error Analysis. To demonstrate how BOND
improves the recall, we compare the prediction performance of
KB matching with the output models of Stage I and Stage II using
Wikigold data. Figure 8 presents the bar plots of four entity types
– “LOC”, “PER”, “ORG” and “MISC”. As can be seen, the KB matching
yields a large amount of ”O” (non-entity) due to its limited cov-
erage. As a result, the recall is very low 47.63%. In contrast, our
model of the Stage I benefits from the transferred knowledge of
pre-trained RoBERTa and is able to correct some wrongly matched
O’s to their corresponding entity types. Therefore, it enjoys a better
recall 54.50%. Moreover, the self-training in the Stage II further
improves the recall to 68.48%.
5 RELATEDWORK AND DISCUSSION
Our work is related to low-resource NER. This line of research fo-
cuses on leveraging cross lingual information to improve the model
performance. For examples, [5, 7] consider NER for a low resource
target language. They propose to train an NER model with anno-
tated language that are closely related to the target language. [44]
proposes to use the bilingual dictionaries to tackle this challenge.
More recently, [32] proposes a Bayesian graphical model approach
to further improve the low resource NER performance.
Our work is also relevant to semi-supervised learning, where
the training data is only partially labeled. There have been many
semi-supervised learning methods, including the popular Mean
Teacher and Virtual Adversarial Training methods used in our ex-
periments for comparison [4, 26, 27, 34, 38]. Different from distant
supervision, these semi-supervised learning methods usually has a
partial set of labeled data. They rely on the labeled data to train an
sufficiently accurate model. The unlabeled data are usually used for
inducing certain regularization to further improve the generaliza-
tion performance. The distant supervision, however, considers the
setting with only noisy labels. Existing semi-supervised learning
methods such as Mean Teacher and Virtual Adversarial Training
can only marginally improve the performance, as shown in the
ablation study in our experiments.
Other relatedworks: [21] proposes a languagemodel-basedmethod
—KALM for NER tasks. However, their approach has two drawbacks:
(i) Since they design a language model designated for NER tasks,
they need to first train the language models from scratch. However,
this often requires a large amount of training corpus and enormous
computational resources. In contrast, BOND uses general-purpose
pre-trained language models, which are publicly available online.
(ii) The training of their language model is not fully unsupervised

and requires token-level annotations. To address this issue, they
resort to distant supervision, which yields incomplete and noisy
annotations. Therefore, their language model does not necessarily
achieve the desired performance.
Larger Pre-trained Language Models: To further improve the
performance of BOND, we can use larger pre-trained languagemod-
els such as RoBERTa-large [23] (Three times as big as RoBERT-base
in our experiments) and T5 [31] (Thirty times larger than RoBERTa-
base). These larger models contain more general semantics and
syntax information, and have the potentials to achieve even better
performance for NER Tasks. Unfortunately, due to the limitation
of our computational resources, we are unable to use them in our
experiments.
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A DETAILED DESCRIPTION OF DISTANT
LABEL GENERATION

A.1 External Knowledge Bases
Wikidata is a collaborative and free knowledge base for the acqui-
sition and maintenance of structured data. It contains over 100 mil-
lion tokens extracted from the set of verified articles on Wikipedia.
Wikidata knowledge imposes a high degree of structured organiza-
tion. It provides a SPARQL query service for users to obtain entity
relationships.
Multi-sources Gazetteers. For each dataset, we build a gazetteer
for each entity type. Take CoNLL03 as an example, we build a
gazetteer for the type PER by collecting data from multiple online
sources including RandomName5, US First Names Database6, Word
Lists7, US Census Bureau8, German Surnames9, Surnames Data-
base10 and Surname List11. We build a gazetteer for the type ORG
by collecting data from Soccer Team12, Baseball Team13 and Inter-
governmental Organization14. We will release all gazetteers and
codes for matching distant labels after the paper is accepted for
publication.

A.2 Distant Labels Generation Details
We first find potential entities by POS tagging obtained from POS
tagger, e.g., NLTK [24]. We then match these potential entities by
usingWikidata query service. Specifically, we use SPARQL to query
the parent categories of an entity in the knowledge tree. We con-
tinue querying to the upper levels until a category corresponding to
a type is found. For entities with ambiguity (e.g., those linked with
multiple parent categories), we discard them during the matching
process (i.e., we assign them with type O). The above procedure is
summarized in Figure 9.

We then build, for each entity type in each dataset, a multi-
sources gazetteer by crawling online data sources. Following the
previous exact string matching methods[9, 35], we match an entity
with a type if the entity appears in the gazetteer for that type.

For the unmatched tokens, we further use a set of hand-crafted
rules to match entities. We notice that among the true entities, there
is usually a stamp word. We match a potential entity with a type if
there exists a stamp word in this entity that has frequent occurrence
in that type. For example, "Inc." frequently occurs in organization
names, thus the appearance of "Inc." indicates that the entity labels
of words in the "XXX Inc." should be B-ORG or I-ORG).

Note that for Twitter, we do not build our own multi-sources
gazetteer. We directly use the baseline system proposed in [10] to
generate the distant labels.

5https://github.com/dominictarr/random-name
6https://data.world/len/us-first-names-database
7https://github.com/imsky/wordlists
8https://www2.census.gov/topics/genealogy/2010surnames/
9https://ziegenfuss.bplaced.net/zfuss/surnames-all.php?tree=1
10https://www.surnamedb.com/Surname
11https://surnameslist.org/
12https://footballdatabase.com/ranking/world
13https://www.ducksters.com/sports/list_of_mlb_teams.php
14https://en.wikipedia.org/wiki/List_of_intergovernmental_organizations

Figure 9: Illustration of matching entities fromWikidata

B BASELINE SETTINGS
For the baselines, we implement LSTM-CNN-CRF with Pytorch15
and use the pre-trained 100 dimension GloVe Embeddings [29] as
the input vector. Then, we set the dimension of character-level
embeddings to 30 and feed them into a 2D convolutional neural
network (CNN) with kernel width as 3. Then, we tune the output
dimension in range of [25, 50, 75, 100, 150] and report the best per-
formance. We train the model for 50 epochs with early stopping.
We use SGD with momentum with𝑚 = 0.9 and set the learning
rate as 2× 10−3. We set the dropout rate to 0.5 for linear layers after
LSTM. We tune weight decay in range of [10−5, 10−6, 10−7, 10−8]
and report the best performance.

For other baselines, we follow the officially released implementa-
tion from the authors: (1) AutoNER: https://github.com/shangjingbo1226/
AutoNER; (2) LRNT: https://github.com/zig-kwin-hu/Low-Resource-
Name-Tagging.

C IMPLEMENTATION DETAILS OF BOND
All implementation are based on the Huggingface Transformer
codebase 16.

C.1 Adapting RoBERTa to the NER task
We choose RoBERTa-base as the backbone model of our NER model.
A linear classification layer is built upon the pre-trained RoBERTa-
base as illustrated in Figure 10.

C.2 Pseudo-labels Generation Details
BERT uses WordPiece [42] for tokenization of the input text. When
the teacher model predicts a set of pseudo-labels for all training
data in Stage II, it assign labels for padded tokens as well. We ignore
those labels in training and loss computation step by label masking.

15https://pytorch.org/
16https://github.com/huggingface/transformers
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Figure 10: The NER Model with Pre-trained RoBERTa

C.3 Parameter Settings
There are several key parameters in our model: 1) For CoNLL03,
we choose𝑇1 = 900 (about 1 epoch) and𝑇3 = 1756 (about 2 epochs).
For Tweet, we choose 𝑇1 = 900 and 𝑇3 = 900. For OntoNotes5,
we choose 𝑇1 = 16500 and 𝑇3 = 1000. For Webpage, we choose
𝑇1 = 300 and 𝑇3 = 200. For Wikigold, we choose 𝑇1 = 350 and

𝑇3 = 700. As for 𝑇2, we stop training when the number of total
training epochs reaches 50 for all datasets. 2) We choose 10−5 as
the learning rate for CoNLL03, Webpage and Wikigold and 2×10−5
for OntoNotes5, Twitter, all with learning rate linear decay of 10−4.
3) We use AdamW with 𝛽1=0.9 and 𝛽2=0.98 as optimizer for all
datasets. 4) We set 𝜖=0.9 for all datasets. 5) The training batch size
is 16 for all datasets except OntoNotes5.0, which uses 32 as the
training batch size. 6) For the NER token-wise classification head,
we set dropout rate as 0.1 and use a linear classification layer with
hidden size 768. For MT, we set ramp-up step as 300 for CoNLL03,
200 for Tweet, 200 for OntoNotes5.0, 300 for Webpage and 40 for
Wikigold. We choose the moving average parameters as 𝛼1 = 0.99
and 𝛼2 = 0.995 for all datasets. For VAT, we set the perturbation
size 𝜖𝑣𝑎𝑡 = 10−4.

C.4 Multiple Re-initialization
Multiple Re-initialization is implemented as follows: In Stage II,
as the performance of the student model no longer improves, we
re-initialize it from the pre-trained RoBERTa-base and start a new
self-training iteration.

C.5 Combine BOND w/ MT&VAT
MT&VAT can easily combined with BOND as follows: During train-
ing, we update the student model by minimize the sum of weighted
MT (or VAT) loss and Eq. (7). The weight of MT (or VAT) loss is
selected in [10, 1, 10−1, 10−2, 10−3] using development set.
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